Цитозольный механизм действия гормонов — Механизм действия гормонов

Автор: | 20.05.2021

Цитозольный механизм действия гормонов

Механизм действия гормонов

Как уже отмечалось выше, гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) от ЦНС к строго определенным и высокоспецифичным клеткам-мишеням соответствующих органов или тканей.

Узнающими центрами клеток-мишеней, с которыми связывается гормон, являются высокоспецифичные рецепторы. Роль таких рецепторов, как правило, выполняют гликопротеины, специфичность которых обусловлена природой углеводного компонента. Рецепторы большинства гормонов (белковых и производных аминокислот) находятся в плазматической мембране клеток.

Рассмотрим основные биохимические события, обеспечивающие перенос сигналов от ЦНС к органам и тканям.

Под влиянием раздражителей в ЦНС возникают сигналы – нервные импульсы, которые затем поступают в гипоталамус или через спинной мозг в мозговое вещество надпочечников.

В гипоталамусе синтезируются первые гормоны «дистанционного» действия, так называемые нейрогормоны или рилизинг-факторы (от англ. release – освобождать). Затем нейрогормоны достигают гипофиза, где регулируют (усиливают или тормозят) выделение тропных гормонов, которые, в свою очередь, контролируют процессы синтеза гормонов периферическими железами.

Мозговое вещество надпочечников под действием сигналов из ЦНС выделяет адреналин и ряд других гормональных веществ. Таким образом, гипоталамус и мозговое вещество надпочечников находятся под прямым контролем ЦНС, в то время как другие эндокринные железы связаны с ЦНС лишь косвенно – через гормоны гипоталамуса и гипофиза.

В результате такой передачи эндокринные железы организма синтезируют специфические гормоны, которые и оказывают регулирующее воздействие на различные органы и ткани организма.

Типы взаимодействий между железами внутренней секреции

Между железами внутренней секреции складываются сложные взаимодействия, среди которых можно выделить следующие основные типы:

1. Взаимодействия по принципу положительной прямой или отрицательной обратной связи. Например, тиреотропный гормон, вырабатываемый в гипофизе, стимулирует образование гормонов щитовидной железы (положительная прямая связь), однако повышение концентрации гормонов щитовидной железы выше нормы тормозит образование тиреотропного гормона гипофиза (отрицательная обратная связь).

2. Синергизм и антагонизм гормональных влияний. Как адреналин, синтезируемый надпочечниками, так и глюкагон, выделяемый поджелудочной желелезой, вызывают увеличение содержания глюкозы в крови за счет распада гликогена в печени (синергизм). Среди группы женских половых гормонов прогестерон – ослабляет, а эстрогены усиливают сократительные функции мускулатуры матки (антагонизм).

В настоящее время известно несколько механизмов действия гормонов, основными из них являются следующие:

1) мембранный;

2) мембранно-внутриклеточный (косвенный);

3) цитозольный (прямой).

Кратко рассмотрим особенности каждого из перечисленных механизмов действия гормонов.

Мембранный механизм редко встречается в изолированном виде и заключается в том, что гормон за счет межмолекулярных взаимодействий с рецепторной белковой частью мембраны клетки и последующих ее конформационных перестроек изменяет (как правило, увеличивает) проницаемость мембраны для некоторых биочастиц (глюкозы, аминокислот, неорганических ионов и др.). В этом случае гормон выступает в качестве аллостерического эффектора транспортных систем клеточной мембраны. Затем поступившие в клетку вещества оказывают влияние на протекающие в ней биохимические процессы, наример, ионы изменяют электрический потенциал клеток.

Мембранно-внутриклеточный механизм действия характерен для пептидных гормонов и адреналина, которые не способны проникать в клетку и влияют на внутриклеточные процессы через химического посредника, роль которого в большинстве случаев выполняют циклические нуклеотиды – циклический 3′,5′-АМФ (цАМФ), циклический 3′,5′-ГМФ (цГМФ) и ионы Са 2+ .

Циклические нуклеотиды синтезируются гуанилатциклазой и кальций-зависимой аденилатциклазой, которые встроены в мембрану и состоят из трех взаимосвязанных фрагментов (рис. ): наружного узнающего мембранного рецептора R, обладающего стереохимическим сродством к данному гормону; промежуточного N-белка, имеющего участок связывания и расщепления ГДФ; каталитической части С, представленной собственно аденилатциклазой, в активном центре которой может протекать следующая реакция:

При взаимодействии гормона с рецептором изменяется конформация сопряженного N-белка и происходит замещение ГДФ, находящегося на неактивном белке, на ГТФ. Комплекс ГТФ–N-белок активирует аденилатциклазу и запускает синтез цАМФ из АТФ. Аденилатциклаза поддерживается в активном состоянии до тех пор, пока существует комплекс гормон-рецептор. Благодаря этому происходит многократное усиление сигнала: на одну молекулу гормона внутри клетки синтезируется 10–100 молекул цАМФ. Сходный механизм реализуется и через цГМФ.

Влияние циклических нуклеотидов на биохимические процессы прекращается под действием специальных ферментов – фосфодиэстераз, разрушающих как сами циклические нуклеотиды, так и соединения, образующиеся в результате их действия – фосфопротеины. Нециклические формы АМФ и ГМФ инактивируют данные процессы.

Цитозольный механизм действия характерен для гормонов, являющихся липофильными веществами, которые способны проникать внутрь клеток через липидный слой мембраны (стероидные гормоны, тироксин). Эти гормоны, проникая внутрь клетки, образуют молекулярные комплексы с белковыми цитоплазматическими рецепторами. Затем в составе комплексов со специальными транспортными белками гормон транспортируется в клеточное ядро, где вызывает изменение активности генов, регулируя процессы транскрипции или трансляции

Таким образом, в то время как пептидные гормоны влияют на постсинтетические события, стероидные гормоны оказывают воздействие на геном клетки.

Цитозольный механизм (действие гидрофобных гормонов)

2020-10-10
29

Гидрофобные гормоны (стероиды, тироксин) и витамин А(ретиноевая кислота) проникают через плазматическую мембрану, взаимодействуют с рецепторами в цитозоле. Гормон-рецепторный комплекс проникает в ядро и влияет на экспрессию генов. В ядре локализован так называемый «гормон-чувствительный элемент». Либо рецепторы могут быть сразу на ДНК (тироксин).

Механизмы развития эндокринопатий

Эндокринопатиимогут протекать: с гиперпродукцией гормонов
с недостаточностью гормонов

Патология эндокринных желез может быть

первичной– обусловлена заболеваниями самих желез внутренней секреции (воспаление, инфекции, метастазы, геморрагии, удаление части или целой железы при операции, аутоиммунные процессы, токсические поражения).

вторичной – связана с дизрегуляцией вследствие дефицита или гиперпродукции тропных гормонов гипофиза или факторов гипоталамуса, с результатом лечения гормональными препаратами, с изменением гормонального фона при опухоли, а также стимуляции гормональных систем вследствие нарушения метаболизма при заболеваниях внутренних органов.

Эндокринопатии также возникают вследствие:

· толерантности тканей к воздействию гормонов (врожденная и приобретенная), например, на уровне рецепторов.

· недостаточности или избытка специфических микроэлементов (йод для щитовидной железы) или витаминов (связь вит. Д ↔паращитовидные железы).

· недостаточности или дефекта какого-либо из ферментов,осуществляющих синтез или деградацию гормона.

· возрастных изменений (при старческом угасании половых функций – проявляются как у женщин, так и у мужчин), которые могут вызвать дисбаланс в работе ферментов вплоть до развития эндокринопатий

Отдельные патологии (примеры)

«аденогипофиз-надпочечники«:

Синдром Кушинга – гиперкортицизм с избыточной продукцией кортикостероидов,
в основном, глюкокортикоидов. Клинически – ожирение, гипертония, остеопороз, гипофункция половых желез, вторичный сахарный диабет (стероидный диабет). Лабораторно – рост уровня АКТГ, гипергликемия, гипохлоремия, эозинофилия.

Гиперальдостеронизм. Первичный (синдром Конна), клинически – гипертензия и симптомы гипокалиемии (задержка воды, мышечная слабость, возможны парали­чи), лабораторно – рост уровня альдостерона, гипернатриемия, гипокалиемия, снижение активности ренина в плазме. Вторичный (при внутренних заболеваниях стимуляция РААС РенинАнгиотензинАльдостероновойСистемы), клиника та же, но лабораторно – повышение активности ренина, рост уровня альдостерона, калий в норме или снижен.

«аденогипофиз-щитовидная железа«:

Гипертиреоз (тиреотоксикоз) и гипотиреоз (гипотиреоидизм, Базедова болезнь). Аутоиммунный тиреоидит.

Цитозольный механизм действия гормонов у гормонов существует четкая иерархия

У многоклеточных существ всегда стоит задача обеспечения взаимосвязи разных органов и баланса их активности. Поэтому большинство гормональных систем взаимосвязаны между собой и регулируются в соответствии с иерархической лестницей.

У высших животных верхнюю часть лестницы занимает система гормонов гипоталамуса, контролируемая центральной нервной системой. Сигналы, получаемые от органов, принимаются и обрабатываются, после чего клетки гипоталамуса отвечают при помощи специфических сигнальных молекул – рилизинг-факторов. На стимулирующие или тормозящие стимулы из ЦНС секретируются стимулирующие или ингибирующие рилизинг-факторы, которые носят название либерины или статины соответственно. Эти нейрогормоны с кровотоком достигают аденогипофиза, где стимулируют (либерины) или ингибируют (статины) биосинтез и секрецию тропных гормонов.

Тропные гормоны воздействуют на периферические железы, стимулируя выделение соответствующих периферических гормонов. К подобным системам относятся группы гормонов тиреоидной функции, глюкокортикоидной функции и профиль половых гормонов. Регуляция этих систем осуществляется по принципу обратной отрицательной связи, т.е. накопление гормонов периферических желез тормозит секрецию рилизинг-факторов гипоталамуса и тропных гормонов гипофиза. Наиболее клинически значимо это проявляется в отношении регуляции стероидных гормонов. Подавляющее действие на активность эндокринных желез может оказывать и результат ответа клеток-мишеней.

Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Регуляция некоторых гормональных систем Гипоталамус — генералитет эндокринной системы

Семейство гипоталамических гормонов – рилизинг-факторов – включает вещества, как правило небольшие пептиды, образующиеся в ядрах гипоталамуса. Их функция – регуляция секреции гормонов аденогипофиза: стимулирование – либерины и подавление – статины.

Доказано существование семи либеринов и трех статинов.

Тиреолиберин – является трипептидом, стимулирует секрецию тиреотропного гормона и пролактина, также проявляет свойства антидепрессанта.

Кортиколиберин – полипептид из 41 аминокислоты, стимулирует секрецию АКТГ и ?-эндорфина, широко влияет на деятельность нервной, эндокринной, репродуктивной, сердечно-сосудистой и иммунной систем.

Гонадолиберин (люлиберин) – пептид из 10 аминокислот, стимулирует высвобождение лютеинизирующего и фолликулостимулирующего гормонов. Гонадолиберин присутствует также в гипоталамусе, участвуя в центральной регуляции полового поведения.

Фоллиберин – стимулирует высвобождение фолликулостимулирующего гормона.

Пролактолиберин – стимулирует секрецию лактотропного гормона.

Пролактостатин – предполагается, что он является дофамином. Снижает синтез и секрецию лактотропного гормона.

Соматолиберин состоит из 44 аминокислот и повышает синтез и секрецию гормона роста.

Соматостатин – пептид из 12 аминокислот, ингибирующий секрецию ТТГ, пролактина, АКТГ и СТГ из гипофиза. Он образуется также в островках поджелудочной железы и контролирует высвобождение глюкагона и инсулина, а также гормонов желудочно-кишечного тракта.

Меланостимулирующий фактор, пентапептид, оказывает стимулирующее действие на синтез меланотропного гормона.

Меланостатин, может быть как три-, так и пентапептидом, обладает антиопиоидным эффектом и активностью в поведенческих реакциях.

Кроме рилизинг-гормонов в гипоталамусе синтезируются также вазопрессин (антидиуретический гормон) и окситоцин.

Представляет собой полипептид, включающий 191 аминокислоту с молекулярной массой 22 кДа и периодом полураспада 20-25 мин.

Осуществляется в ацидофильных клетках гипофиза – подкласс соматотрофов с волнообразной секрецией и пиком каждые 20-30 мин.

Регуляция синтеза и секреции

Активируют: стресс (боль, тревога, холод), гипогликемия (при физической нагрузке и кратком голодании), андрогены и эстрогены, некоторые аминокислоты (например, аргинин), медленная фаза сна (вскоре после засыпания), морфин, вазопрессин, трийодтиронин (особенно у детей, через высвобождение соматолиберина).

Уменьшают: гипергликемия, соматомедины.

Рецептор с каталитической тирозинкиназной активностью. Часть эффектов связана с увеличением количества молекул аденилатциклазы в цитоплазматической мембране.

Существенную роль в эффектах гормона играют соматомедины (ростовые факторы), вырабатываемые в печени после воздействия на нее СТГ.

Мишени и эффекты

Мишенью являются костная, хрящевая, мышечная, жировая ткани и печень. Гормон стимулирует общий рост клетки-мишени, но не ее дифференцировку.

Белковый обмен: Вызывает положительный азотистый баланс, в целом повышает транспорт аминокислот в печень, мышечную, хрящевую и костную ткани, активирует все стадии биосинтеза белка.

Нуклеиновый обмен: Активирует синтез РНК и ДНК.

Углеводный обмен: Подавляет поглощение глюкозы в периферических тканях, стимулирует глюконеогенез и гликогенолиз в печени, что вызывает гипергликемию. В мышцах подавляет гликолиз и стимулирует синтез гликогена. У детей стимулирует образование хондроитинсульфата в костной ткани.

Жировой обмен: Активирует липолиз, накопление жирных кислот в крови и, при недостатке инсулина, кетогенез.

Минеральный обмен: Стимулирует гидроксилирование и активацию витамина D в почках. Формирует положительный баланс ионов Mg 2+ , Ca 2+ , Na + , К + , Cl – , SO4 2– , фосфатов.

В статье «Цитозольный механизм действия гормонов» использованы материалы:

http://helpiks.org/4-21996.html

http://studopedia.ru/29_15363_tsitozolniy-mehanizm-deystvie-gidrofobnih-gormonov.html

http://studfile.net/preview/9450755/page:4/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *