Тиреотропный гормон биохимия — Тиреотропный гормон (ТТГ, тиротропин)

Автор: | 20.05.2021

Содержание

Тиреотропный гормон биохимия

Тиреотропный гормон (ТТГ, тиротропин)

Тиреотропный гормон (ТТГ, тиротропин) — раздел Химия, Биохимия В Отличие От Рассмотренных Пептидных Гормонов Гипофиза, Предс.

В отличие от рассмотренных пептидных гормонов гипофиза, представленных в основном одной полипептидной цепью, тиротропин является сложным гликопротеином и содержит, кроме того, по две α- и β-субъединицы, которые в отдельности биологической активностью не обладают: мол. масса его около 30000.

Тиротропин контролирует развитие и функцию щитовидной железы и регулирует биосинтез и секрецию в кровь тиреоидных гормонов. Полностью расшифрована первичная структура α- и β-субъединиц тиротропина быка, овцы и человека: α-субъединица, содержащая 96 аминокислотных остатков, имеет одинаковую аминокислотную последовательность во всех изученных ТТГ и во всех лютеинизирующих гормонах гипофиза; β-субъединица тиротропина человека, содержащая 112 аминокислотных остатков, отличается от аналогичного полипептида в ТТГ крупного рогатого скота аминокислотными остатками и отсутствием С-концевого метионина. Поэтому многие авторы специфические биологические и иммунологические свойства гормона объясняют наличием β-субъединицы ТТГ в комплексе с α-субъединицей. Предполагают, что действие тиротропина осуществляется, подобно действию других гормонов белковой природы, посредством связывания со специфическими рецепторами плазматических мембран и активирования аденилатциклазной системы.

Эта тема принадлежит разделу:

Биохимия

Федеральное агентство по образованию.. бузулукский гуманитарно технологический институт.. филиал государственного образовательного учреждения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тиреотропный гормон (ТТГ, тиротропин)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет биохимии
Биологическая химия- это наука, изучающая химический состав органов и тканей организмов и химические процессы и превращения, лежащие в основе их жизнедеятельности. Современная биохи

История развития биохимии
Можно выделить основные этапы развития биохимической науки. 1. “Протобиохимия”. Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневеко

Методы изучения
Основным объектом биохимии является изучение обмена веществ и энергии. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ. Обмен вещ

Значимость биохимии как науки
Сейчас уже невозможно представить ни одну науку, которая бы не обходилась без достижений биохимии. Значение биологической химии нельзя не учитывать. Она имеет как научное, так и практическое значен

Элементарный состав белков
В настоящее время установлено, что в живой природе не существует небелковых организмов. Белки наиболее важная часть веществ, входящих в состав организма. Впервые белки были обнаруже

Аминокислотный состав белков
Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты мог

Общие химические свойства
Аминокислоты могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы -COOH, так и основные свойства, обусловленные аминогруппой -NH2

Электрофильно-нуклеофильные свойства
1) Реакция ацилирование – взаимодействие со спиртами: NаОН NH3+– CRH – COO- + СН3ОН + НС1 &#859

Внутримолекулярное дезаминирование
Ок-ль NH3+– 0CH – COO- аспартатаммиаклиаза -ООС –-1С – Н | || Н – С-2Н – СОО-

Биологические функции белков
Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях – н

Структуры белка
Получены доказательства предположения К. Линдерстрёма-Ланга о существовании 4 уровней структурной организации белковой молекулы: первичной, вторичной, третичной и четвертичной струк

Определение С-концевой аминокислоты боргидридом натрия
Видно, что в указанных условиях только одна, а именно С-концевая, аминокислота будет превращаться в α-аминоспирт, легко идентифицируемый методом хроматографии. Таким образом, при помощи указан

Физико-химические свойства белков
Наиболее характерными физико-химическими свойствами белков являются высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая актив

Химия нуклеиновых кислот
В наше время трудно назвать область естествознания, которую не интересовала бы проблема структуры и функций нуклеиновых кислот. Несмотря на огромный прогресс, достигнутый в последние десятилетия пр

Методы выделения нуклеиновых кислот
При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. Нуклеиновые кислоты являются составной частью сложных

Химический состав нуклеиновых кислот
Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, п

Структура нуклеиновых кислот
Для понимания ряда особенностей структуры ДНК особое значение имели закономерности состава и количественного содержания азотистых оснований, установленные впервые Э. Чаргаффом. Оказалось, что азоти

Первичная структура нуклеиновых кислот
Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК и РНК. Такая цепь стабилизируется 3′,5′-фос

Вторичная структура нуклеиновых кислот
В соответствии с моделью Дж. Уотсона и Ф. Крика, предложенной в 1953г. на основании ряда аналитических данных, а также рентгеноструктурного анализа молекула ДНК состоит из двух цепей, образуя право

Третичная структура нуклеиновых кислот
Выделить нативную молекулу ДНК из большинства источников, в частности хромосом, чрезвычайно трудно из-за высокой чувствительности молекулы ДНК к нуклеазам тканей и гидродинамической деструкции.

Транспортные РНК
На долю тРНК приходится около 10–15% от общего количества клеточной РНК. К настоящему времени открыто более 60 различных тРНК. Для каждой аминокислоты в клетке имеется, по крайней мере, одна специф

Матричная РНК
В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информ

Характеристика ферментов, их свойств
В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках

Отличительные признаки ферментативного и химического катализа
В принципе клетка использует те же самые химические реакции, что и химик в своей лаборатории. Однако на условия протекания реакций в клетке накладываются жесткие ограничения. В лаборатории для уско

Пространственное строение
Причиной всех этих уникальных свойств ферментов является их пространственное строение. Все ферменты представляют собой глобулярные белки, намного превосходящие по размерам субстрат. Именно это обст

Функции коферментов и простетических групп
5.4.1 Коферменты и витамины. Коферменты – это органические вещества, предшественниками которых являются витамины. Некоторые из них непрочно связаны с белком (НАД, НSКоА, и др). есть фермент

Механизм действия ферментов
Структура и функции ферментов, а также механизм их действия почти ежегодно подробно обсуждаются на многих международных симпозиумах и конгрессах. Важное место отводится рассмотрению структуры всей

Уравнения Михаэлиса-Ментен и Лайнуивера-Бэрка
Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия.

Факторы, определяющие активность ферментов. Зависимость скорости реакции от времени
В этом разделе кратко рассмотрены общие факторы, в частности зависимость скорости ферментативной реакции от времени, влияние концентраций субстрата и фермента на скорость реакций, катализируемых фе

Влияние концентраций субстрата и фермента на скорость ферментативной реакции
Из приведенного ранее материала вытекает важное заключение: одним из наиболее существенных факторов, определяющих скорость ферментативной реакции, является концентрация субстрата (и

Активирование и ингибирование ферментов
Скорость ферментативной реакции, как и активность фермента, в значительной степени определяется также присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции, а вторые торм

Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами
В ряде случаев ионы металлов (Со2+, Mg2+, Zn2+, Fe2+) выполняют функции простетических групп ферментов, или служат акцепторами и дон

Применение ферментов
Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют сво

Химия липидов
Липиды представляют собой обширную группу соединений, существенно различающихся по своей химической структуре и функциям. Поэтому трудно дать единое определение, которое подошло бы для всех соедине

Жирные кислоты
Жирные кислоты – алифатические карбоновые кислоты – в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинст

Глицериды (ацилглицеролы)
Глицериды(ацилглицерины, или ацилглицеролы) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицир

Фосфолипиды
Фосфолипидыпредставляют собой сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой. В состав фосфолипидов входят также азотс

Сфинголипиды (сфингофосфолипиды)
Сфингомиелины.Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сф

Стероиды
Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кис

Химия углеводов
Впервые термин «углеводы» был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу C

Биологическая роль углеводов
Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энер

Моносахариды
Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то

Основные реакции моносахаридов, продукты реакций и их свойства
Реакции полуацетального гидроксила.Уже отмечалось, что моносахариды как в кристаллическом состоянии, так и в растворе в основном существуют в полуацетальных формах.

Олигосахариды
Олигосахариды– углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды,

Полисахариды
Полисахариды – высокомолекулярные продукты поликонденсации моносахаридов, связанных друг с другом гликозидными связями и образующих линейные или разветвленные цепи. Наиболее часто встречающимся мон

Гетерополисахариды
Полисахариды, в структуре которых характерно наличие двух или более типов мономерных звеньев, носят название гетерополисахаридов. Принято считать, что, поскольку гетерополи

Витамины группы А
Витамин А (ретинол; антиксерофтальмический витамин) хорошо изучен. Известны три витамина группы А: А1, А2 и цис-форма витамина А1, названная

Витамины группы D
Витамин D (кальциферол; антирахитический витамин) существует в виде нескольких соединений, различающихся как по химическому строению, так и по биологической активности. Для человека

Витамины группы К
К витаминам группы К, согласно номенклатуре биологической химии, относятся 2 типа хинонов с боковыми цепями, представленными изопреноидными звеньями (цепями): витамины К1

Витамины группы Е
В начале 20-х годов Г. Эванс показал, что в смешанной пище содержится вещество, которое абсолютно необходимо для нормального размножения животных. Так, у крыс, содержащихся на синте

Витамины, растворимые в воде
Условно можно считать, что отличительной особенностью витаминов, растворимых в воде, является участие большинства из них в построении молекул коферментов (см. табл. 12), представляющих собой низком

Витамин РР
Витамин РР (никотиновая кислота, никотинамид, ниацин) получил также название антипеллагрического витамина (от итал. preventive pellagra – предотвращающий пеллагру), поскольку его от

Биотин (витамин Н)
В 1916 г. в опытах на животных было показано токсичное действие сырого яичного белка; употребление печени или дрожжей снимало этот эффект. Фактор, предотвращающий развитие токсикоза

Фолиевая кислота
Фолиевая (птероилглутаминовая) кислота (фолацин) в зависимости от вида животных или штамма бактерий, нуждающихся для нормального роста в присутствии этого пищевого фактора, называла

Витамин С
Витамин С (аскорбиновая кислота; антискорбутный витамин) получил название антискорбутного, антицинготного фактора, предохраняющего от развития цинги – болезни, принимавшей в средние

Витамин Р
Витамин Р (рутин, цитрин; витамин проницаемости) выделен в 1936 г. А. Сент-Дьердьи из кожуры лимона. Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeabi

Общее понятие о гормонах
Учение о гормонах выделено в самостоятельную науку – эндокринологию. Современная эндокринология изучает химическую структуру гормонов, образующихся в железах внутренней секреции, з

Гормоны гипоталамуса
Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние дес

Гормоны гипофиза
В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях (та

Вазопрессин и окситоцин
Гормоны вазопрессин и окситоцин синтезируются рибосомальным путем. Химическое строение обоих гормонов было расшифровано классическими работами В. дю Виньо и сотр., впервые выделивши

Меланоцитстимулирующие гормоны (МСГ, меланотропины)
Меланотропины синтезируются и секретируются в кровь промежуточной долей гипофиза. Выделены и расшифрованы первичные структуры двух типов гормонов – α- и β-меланоцитстимули

Адренокортикотропный гормон (АКТГ, кортикотропин)
Еще в 1926 г. было установлено, что гипофиз оказывает стимулирующее влияние на надпочечники, повышая секрецию гормонов коркового вещества. АКТГ, помимо основного действия – стимуляц

Соматотропный гормон (СТГ, гормон роста, соматотропин)
Гормон роста был открыт в экстрактах передней доли гипофиза еще в 1921 г., однако в химически чистом виде получен только в 1956–1957 гг. СТГ синтезируется в ацидофильных клетках пер

Лактотропный гормон (пролактин, лютеотропный гормон)
Пролактин считается одним из наиболее «древних» гормонов гипофиза, поскольку его удается обнаружить в гипофизе низших наземных животных, у которых отсутствуют молочные железы, а так

Гонадотропные гормоны (гонадотропины)
К гонадотропинам относятся фолликулостимулирующий гормон (ФСГ, фоллитропин) и лютеинизирующий гормон (ЛГ, лютропин), или гормон, стимулирующий интерстициальные клетки. Оба гормона с

Липотропные гормоны (ЛТГ, липотропины)
Среди гормонов передней доли гипофиза, структура и функция которых выяснены в последнее десятилетие, следует отметить липотропины, в частности β- и γ-ЛТГ. Наиболее подробн

Гормоны паращитовидных желез (паратгормоны)
К гормонам белковой природы относится также паратиреоидный гормон (паратгормон), точнее, группа паратгормонов, различающихся последовательностью аминокислот. Они синтезируются паращитовидными желез

Гормоны щитовидной железы
Щитовидная железа играет исключительно важную роль в обмене веществ. Об этом свидетельствуют резкое изменение основного обмена, наблюдаемое при нарушениях деятельности щитовидной железы, а также ря

Гормоны поджелудочной железы
Поджелудочная железа относится к железам со смешанной секрецией. Внешнесекреторная функция ее заключается в синтезе ряда ключевых ферментов пищеварения, в частности амилазы, липазы, трипсина, химо-

Гормоны надпочечников
Надпочечники состоят из двух индивидуальных в морфологическом и функциональном отношениях частей – мозгового и коркового вещества. Мозговое вещество относится к хромаффинной, или адреналовой, систе

Половые гормоны
Половые гормоны синтезируются в основном в половых железах женщин (яичники) и мужчин (семенники); некоторое количество половых гормонов образуется, кроме того, в плаценте и корковом веществе надпоч

Молекулярные механизмы передачи гормонального сигнала
Несмотря на огромное разнообразие гормонов и гормоноподобных веществ, в основе биологического действия большинства гормонов лежат удивительно сходные, почти одинаковые фундаментальн

Понятие метаболизма
Жизнедеятельность организма обеспечивается тесной связью с внешней средой, которая поставляет кислород и питательные вещества и постоянным превращением этих веществ в клетках организма. Продукты ра

Биологическое окисление
При биологическом окислении от органической молекулы под действием соответствующего фермента отщепляются два атома водорода. В ряде случаев при этом между ферментами и окисленной мо

Переваривание и всасывание
Переваривание углеводов начинается уже в ротовой полости под воздействием слюны, содержащей ферменты амилазу и мальтазу, которые обеспечивают распад углеводов до глюкозы. В полости желудка

Непрямой прямой
глюкоза (6 атомов углерода) ↓ глюкозо–6- фосфат (6 атомов углерода)

Анаэробный распад
Анаэробный распад начинается с распада глюкозы – гликолиз или с распада гликогена – гликогенолиз. Этот путь распада происходит в основном в мышцах. Сущность этого проц

Изомеризация 3-фосфоглицерата
фосфоизомераза 2 О = С – СН – СН2ОФ2О = С – СН – СН2ОН | | | | О- ОН О- ОФ

Аэробный распад
Пируват, образующийся при анаэробном пути распада углеводов, под действием пируватдегидрогеназы (НАД+ и кофермент НSКоА) декарбрксилируется с образованием ацетил коэнзима А. &nb

Строение и синтез гликогена
Гликоген представляет собой разветвленный полисахарид, мономером которого является глюкоза. Остатки глюкозы соединены в линейных участках 1-4 гликозидными связями, а в местах развет

Регуляция синтеза и его нарушения
Распад гликогена происходит в основном в период между приемами пищи и ускоряется во время физической работы. Этот процесс происходит путем последовательного отщепления остатков глюкозы в виде глюко

Глюконеогенез
Глюконеогенез – это процесс синтеза глюкозы из веществ неуглеводной природы. Главными субстратами глюконеогенеза являются пируват, лактат, глицерин, аминокислоты. Важнейшей функцией глюконеогенеза

Обмен липидов
Липиды – это разнообразная по строению группа органических веществ, у которых общее свойство – гидрофобность. Жиры – триглицериды – являются самой компактной и энергоемкой формой хранения энергии.

Превращение триглицеридов и окисление глицерина
Переваривание жиров – это гидролиз жиров под действием фермента панкреатической липазы. Поступивший в клетки нейтральный жир под действием тканевых липаз гидролизуется на глицерин и жирные

Окисление жирных кислот
Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрез

Биосинтез жирных кислот
Наряду с распадом жирных кислот в организме идет и их образование. Биосинтез жирных кислот – процесс многостадийный, циклический. І стадия. 1) Конденсация СО2.

Превращения глицерофосфатидов
В клетках под действием специфических ферментов фосфолипаз глицерофосфатиды гидролизуются на составные компоненты: Глицерофосфатиды гидролизуются фосфолипазами на глицерин, жирные кислоты

Значение белков в организме
Белки – это ферменты, гормоны и др. синтез которых из неорганических веществ возможен лишь в организме растений. В животных организмах белок синтезируется из аминокислот, часть которых образуется в

Переваривание и всасывание белка
В полости рта белки не расщепляются, так как отсутствуют протеолитические ферменты. В желудке белки расщепляются под действием желудочного сока, которого в сутки выделяется 2,5 л. В

Биосинтез белка
Биосинтез белка имеет важнейшее научное и клиническое значение. Отличие одного индивидуального белка от другого определяется природой и последовательностью чередования аминокислот, входящих в его с

Дезаминирование аминокислот
Дезаминирование – расщепление аминокислот под действием дезаминаз (оксидаз) с выделением азота в виде аммиака. 1. Прямое дезаминирование характерно для α-аминокислот (

Переаминирование (трансаминирование) аминокислот
Трансаминирование – реакция переноса аминогруппы с аминокислоты на α-кетокислоту. Не подвергаются прераминированию только Лиз иТре. R R’ R R’

Декарбоксилирование аминокислот
Декарбоксилирование протекает под действием декарбоксилаз с отщеплением от аминокислоты углекислого газа и образованием аминов.

Обмен сложных белков
16.1 Обмен нуклеопротеидов Нуклеопротеиды и их производные выполняют в организме многообразные функции, участвуя: — в синтезе нуклеиновых кислот

Обмен гемоглобина
Из различных хромопротеинов наибольшее значение имеет гемоглобин. Поступающий с пищей гемоглобин в желудочно-кишечном тракте распадается на составные части – глобин и гем. Глобин как белок, гидроли

Конечные продукты распада аминокислот
В организме человека подвергается распаду около 70 г аминокислот в сутки, при этом в результате реакций дезаминирования и окисления биогенных аминов освобождается большое количество

Синтез мочевины, орнитиновый цикл
Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины. Последняя выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обм

Обмен отдельных аминокислот
Главная часть аминокислот идет на синтез белка, остальная часть подвергается превращениям и принимает участие в образовании многих веществ, имеющих большое значение для организма. Углеродн

Взаимосвязь обмена белков, жиров и углеводов. Обмен воды и минеральных солей
Живой организм и его функционирование находятся в постоянной зависимости от окружающей среды. Интенсивность обмена с внешней средой и скорость внутриклеточных процессов обмена вещес

Взаимосвязь обмена углеводов и жиров
Конечными продуктами обмена веществ являются СО2, Н2О и мочевина. Углекислый газ, образующийся при декарбоксилировании углеводов, жиров, белков, нуклеиновых кислот поступает в

Взаимосвязь обмена углеводов и белков
При распаде белков образуются аминокислоты, большая часть которых называется гликогенными и служит источником веществ, необходимых для синтеза углеводов. Вначале аминокислоты подвергаются

Взаимосвязь обмена белков и жиров
О взаимосвязи этого вида обмена веществ известно мало. Возможно, что превращения аминокислот в жирные кислоты происходит через образование вначале углеводов, хотя некоторые аминокислоты называемые

Понятие о гомеостазе
Организм – термодинамическая открытая система, поэтому это позволяет ему сохранять устойчивость, уровень работоспособности, а также относительное постоянство внутренней среды, которое называется го

Водный обмен и его регуляция
Вода – составная часть организма. Все реакции обмена веществ протекают в водной среде, в которой существуют клетки, и связь между ними поддерживаются через жидкость. Основная часть биологической жи

Минеральный обмен
Минеральные вещества – это незаменимые вещества для организма, хотя и не обладают питательной ценностью и не являются источником энергии. Их значение определяется тем, что они входят в состав всех

Гормоны тиреоидной функции

Тиреотропный гормон

Строение

Представляет собой гликопротеин с молекулярной массой 30 кДа, состоит из двух субъединиц α- и β, α-субъединица схожа с таковой гонадотропных гормонов, β-субъединица специфична для ТТГ.

Синтез

Осуществляется в базофильных тиреотрофах гипофиза.

Регуляция синтеза и секреции

Активируют : тиреолиберин, охлаждение (закаливание, обливание холодной водой); также усиливается в вечернее время суток.

Уменьшают : соматостатин, кортизол, тироксин и трийодтиронин (по механизму обратной отрицательной связи).

Механизм действия

Аденилатциклазный, связанный с ингибированием GI-белка и накоплением цАМФ, и кальций-фосфолипидный механизм с образованием инозитол-трифосфата, диацилглицерола и комплекса кальций-кальмодулин.

Мишени и эффекты

Тиреотропный гормон в щитовидной железе:

1. Обеспечивает жизнедеятельность щитовидной железы

  • стимулирует углеводный обмен (гликолиз, ПФП), синтез гетерополисахаридов,
  • повышает синтез белков, фосфолипидов и нуклеиновых кислот,
  • стимулирует васкуляризацию щитовидной железы,
  • стимулирует рост и пролиферацию тиреоидных клеток,

2. Стимулирует гормональную активность щитовидной железы

  • активирует натрий-йодидный транспортер на базолатеральной мембране тиреоцита, что повышает захват йода,
  • активирует анион-транспортный белок на апикальной мембране тиреоцита, что увеличивает переход йода в фооликулярное пространство,
  • активирует все стадии образования трийодтиронина и тироксина, в том числе увеличивает экспрессию гена тиреопероксидазы.

Патология

При уменьшении выработки изменяется масса тела, повышается утомляемость, возникают симптомы гипотиреоза (см ниже).

Йодтиронины

Строение

К гормонам самой щитовидной железы относятся тироксин и трийодтиронин, которые представляют собой йодированные производные аминокислоты тирозина.

Строение гормонов щитовидной железы

Синтез

Осуществляется в фолликулярных клетках щитовидной железы. Йодиды поступают через базолатеральную мембрану в фолликулярную клетку симпортом с ионами Na + , градиент последних создается Na + ,K + -АТФазой, далее перемещаются к апикальной мембране и выходят из клетки в фолликулярное пространство при участии анион-транспортного белка.

На апикальной мембране клеток селен-зависимая гемсодержащая тиреопероксидаза :

  • йодирует остатки тирозина в тиреоглобулине с образованием моно- и дийодпроизводных (МИТ, ДИТ) тирозина,
  • конденсирует часть МИТ и ДИТ до йодтиронинов, при этом доля трийодтиронина (Т3) и тетрайодтиронина (тироксин, Т4) составляет около 30% от всех йодпроизводных.

Синтез тиреоидных гормонов. Роль селена и иода. Участие тиреопероксидазы

Схема реакций синтеза тиреоидных гормонов

Йодированный тиреоглобулин хранится в виде коллоида в просвете фолликула, при тиреотропной стимуляции пиноцитируется фолликулярными клетками, сливается с лизосомами и гидролизуется. Далее три- и тетрайодтиронин секретируются в кровь. В крови гормоны транспортируются специфическим глобулином, а также альбумином.

Неиспользованные моно- и дийодтирозины удерживаются в клетке и дейодируются йодтирозиндегалогеназой. Высвобожденный йодид вновь используется для синтеза гормонов щитовидной железы.

Регуляция синтеза и секреции

Активируют: тиреотропин на этапах поглощения йода, синтеза тиреоглобулина, эндоцитоза и секреции Т3 и Т4 в кровь.

Уменьшают: тироксин и трийодтиронин (по механизму обратной отрицательной связи).

Синтез гормонов также подавляют стрессы, инфекции, травмы, высокие концентрации йода (бесконтрольный прием препаратов KJ), соединения фтора, токсины (пестициды, кадмий, свинец, ртуть).

Механизм действия

Мишени и эффекты

Рецепторы к йодтиронинам имеют все ткани организма. В клетках-мишенях, особенно в печени, тироксин дейодируется и активной формой является трийодтиронин (3,5,3′-производное).

Превращение тироксина в активный 3,5,3′-трийодтиронин происходит при участии деиодиназы 2 типа и нуждается в ионах цинка и селена. Эта реакция ослаблена у плода, новорожденных и престарелых.

Деактивация тироксина в неактивный 3,3′,5′-трийодтиронин (reverse T3, rT3) происходит при участии деиодиназы (тип 3). Этот процесс увеличивают стресс, травмы, низкокалорийная диета. воспалительные процессы (цитокины), инфекции, дисфункция печени и почек, токсины и некоторые лекарства.

Тиреоидные гормоны увеличивают скорость базального метаболизма. Главным эффектом является повышение активности Na + ,K + -АТФазы , что приводит к быстрому расходованию АТФ и по механизму дыхательного контроля запускает катаболизм углеводов и липидов. В митохондриях увеличивается количество АТФ/АДФ-транслоказы и потребление кислорода. Сопутствующим эффектом усиления катаболизма является термогенез (наработка тепла).

У взрослых действие тиреоидных гормонов в отношении углеводов и липидов в основном катаболическое:
Углеводный обмен : Увеличивает гликогенолиз (индукция гликогенфосфорилазы) и аэробное окисление глюкозы.
Липидный обмен : Стимулирует липолиз (индукция гормон-чувствительной липазы), β-окисление жирных кислот, подавляет стероидогенез.

Белковый обмен : Усиливает транспорт аминокислот в клетки. Активирует синтез дифференцировочных белков в ЦНС, гонадах, костной ткани и обусловливает развитие этих тканей.
У детей действие тиреоидных гормонов в целом анаболическое, т.к. трийодтиронин усиливает выделение соматолиберина, что стимулирует секрецию гормона роста. Одновременно он синергичен другим метаболическим эффектам СТГ, что и является причиной низкорослости при гипотиреозе.

Нуклеиновый обмен : Активирует начальные стадии синтеза пуринов и синтеза пиримидинов, стимулирует дифференцировочный синтез РНК и ДНК.

Также трийодтиронин в надпочечниках подавляет синтез катехоламинов, хотя в целом чувствительность тканей к адреналину повышается.

Инактивация тиреоидных гормонов

Деактивация тиреоидных гормонов происходит в тканях-мишенях при действии дейодиназ, последовательно удаляющих от молекулы йод. Далее реакции катаболизма включают дезаминирование или декарбоксилирование боковой цепи или расщепление эфирной связи с образованием неактивных соединений. В печени дейодированные метаболиты связываются с глюкуроновой или серной кислотой и удаляются с желчью.

Патология

Гипофункция

Причина. Развивается при снижении синтеза тиреоидных гормонов в результате недостаточной стимуляции со стороны гипофиза и/или гипоталамуса, при заболевании самой железы, при нехватке необходимых веществ (селен, железо, йод, аминокислоты). Часто причиной выраженного гипотиреоза является болезнь Хашимото , при которой вырабатываются блокирующие антиантитела к рецепторам.

Клиническая картина

Симптомами субклинического гипотиреоза, зачастую неспецифическими, могут быть

  • отечность лица, сухость кожи и волос, ломкость ногтей, увеличение массы тела, бледность, скованность мышц,
  • галакторея у женщин в конце цикла,
  • брадикардия, понижение систолического давления,
  • психическая инертность, депрессия, апатия, вялость, сонливость, утомляемость, запоры,
  • снижение утренней температуры тела до 36,0°-35,5°С и ниже.

У подростков отмечается отставание в физическом развитии, позднее половое созревание, функциональная дебильность, т.е. замедление мышления, снижение успеваемости в школе, неспособность к творческой деятельности, утрата чувства юмора.

При наличии выраженного гипотиреоза:

  • у плодов, новорожденных и детей младшего возраста развивается кретинизм .
  • у взрослых отмечается микседема , у женщин – бесплодие и галакторея (см регуляция синтеза и секреции пролактина),
  • у обоих полов – деменция, психоз.

При лечении используют заместительную терапию левотироксином (L-тироксин).

Гиперфункция

Причина. Большинство случаев выраженного гипертиреоза вызвано наличием активирующих антиантител к рецепторам . В этом случае заболевание носит название болезнь фон Базедова (в отечественной и европейской литературе) или болезнь Грейвса (в американской литературе).

Клиническая картина.

Симптомами субклинического гипертиреоза являются

  • трудность засыпания, эмоциональная лабильность и нервозность (плаксивость),
  • выпадение волос, сухие ногти,
  • неизменность веса на фоне повышения аппетита,
  • тахикардия, мышечная слабость, потливость, влажные ладони.

При более выраженной форме отмечается субфебрильная температура (до 37,5°С), особенно к вечеру, нервное возбуждение, экзофтальм, тремор, диарея, похудание, у женщин бесплодие и скудость месячных.

При лечении используют тиреостатические препараты, которые ингибируют тиреопероксидазу (мерказолил, пропилтиоурацил), радиойодтерапию и хирургическое иссечение участка железы.

Тиреотропный гормон (ттг, тиротропин)

В отличие от рассмотренных пептидных гормонов гипофиза, представленных в основном одной полипептидной цепью, тиротропин является сложным гликопротеином и содержит, кроме того, по две α- и β-субъединицы, которые в отдельности биологической активностью не обладают: мол. масса его около 30000.

Тиротропин контролирует развитие и функцию щитовидной железы и регулирует биосинтез и секрецию в кровь тиреоидных гормонов. Полностью расшифрована первичная структура α- и β-субъединиц тиротропина быка, овцы и человека: α-субъединица, содержащая 96 аминокислотных остатков, имеет одинаковую аминокислотную последовательность во всех изученных ТТГ и во всех лютеинизирующих гормонах гипофиза; β-субъеди-ница тиротропина человека, содержащая 112 аминокислотных остатков, отличается от аналогичного полипептида в ТТГ крупного рогатого скота аминокислотными остатками и отсутствием С-концевого метионина. Поэтому многие авторы специфические биологические и иммунологические свойства гормона объясняют наличием β-субъединицы ТТГ в комплексе с α-субъединицей. Предполагают, что действие тиротропина осуществляется, подобно действию других гормонов белковой природы, посредством связывания со специфическими рецепторами плазматических мембран и активирования аденилатциклазной системы (см. далее).

Гонадотропные гормоны (гонадотррпины)

К гонадотропинам относятся фолликулостимулирующий гормон (ФСГ, фоллитропин) и лютеинизирующий гормон (ЛГ, лютропин), или гормон, стимулирующий интерстициальные клетки . Оба гормона синтезируются в передней доле гипофиза и являются, как и тиротропин, сложными белками – гликопротеинами с мол. массой 25000. Они регулируют стероидо- и гаметогенез в половых железах. Фоллитропин вызывает созревание фолликулов в яичниках у самок и сперматогенез – у самцов. Лютропин у самок стимулирует секрецию эстрогенов и прогестерона, как и разрыв фолликулов с образованием желтого тела, а у самцов – секрецию тестостерона и развитие интерстициальной ткани. Биосинтез гонадотропинов, как было отмечено, регулируется гипоталамическим гормоном гонадолиберином.

Химическая структура молекулы лютропина расшифрована полностью. Лютропин состоит из двух α- и β-субъединиц. Структура α-субъединиц гормона у большинства животных совпадает. Так, у овцы она содержит 96 аминокислотных остатков и 2 углеводных радикала. У человека α-субъеди-ница гормона укорочена на 7 аминокислотных остатков с N-конца и отличается природой 22 аминокислот. Расшифрована также последовательность аминокислот в β-субъединицах лютропина свиньи и человека. α- и β-Субъ-единицы в отдельности лишены биологической активности (по аналогии с большинством субъединиц ферментов). Только их комплекс, образование которого, вероятнее всего, предопределено первичной структурой их, приводит к формированию биологически активной макромолекулярной структуры за счет гидрофобных взаимодействий.

Гормоны паращитовидных желез (паратгормоны)

К гормонам белковой природы относится также паратиреоидный гормон (паратгормон), точнее, группа паратгормонов, различающихся последовательностью аминокислот. Они синтезируются паращитовидными железами. Еще в 1909 г. было показано, что удаление паращитовидных желез вызывает у животных тетанические судороги на фоне резкого падения концентрации кальция в плазме крови; введение солей кальция предотвращало гибель животных. Однако только в 1925 г. из паращитовидных желез был выделен активный экстракт, вызывающий гормональный эффект – повышение содержания кальция в крови. Чистый гормон был получен в 1970 г. из паращитовидных желез крупного рогатого скота; тогда же была определена его первичная структура. Выяснено, что паратгормон синтезируется в виде предшественника (115 аминокислотных остатков) пропарат-гормона, однако первичным продуктом гена оказался препропарат-гормон, содержащий дополнительно сигнальную последовательность из 25 аминокислотных остатков. Молекула паратгормона быка содержит 84 аминокислотных остатка и состоит из одной полипептидной цепи.

Выяснено, что паратгормон участвует в регуляции концентрации катионов кальция и связанных с ними анионов фосфорной кислоты в крови. Как известно, концентрация кальция в сыворотке крови относится к химическим константам, суточные колебания ее не превышают 3–5% (в норме 2,2– 2,6 ммоль/л). Биологически активной формой считается ионизированный кальций, концентрация его колеблется в пределах 1,1–1,3 ммоль/л. Ионы кальция оказались эссенциальными факторами, не заменимыми другими катионами для ряда жизненно важных физиологических процессов: мышечное сокращение, нервно-мышечное возбуждение, свертывание крови, проницаемость клеточных мембран, активность ряда ферментов и т.д. Поэтому любые измененния этих процессов, обусловленные длительным недостатком кальция в пище или нарушением его всасывания в кишечнике, приводят к усилению синтеза паратгормона, который способствует вымыванию солей кальция (в виде цитратов и фосфатов) из костной ткани и соответственно к деструкции минеральных и органических компонентов костей.

Другой орган-мишень паратгормона – это почка. Паратгормон уменьшает реабсорбцию фосфата в дистальных канальцах почки и повышает канальце-вую реабсорбцию кальция.

Следует указать, что в регуляции концентрации Са 2+ во внеклеточной жидкости основную роль играют три гормона: паратгормон, кальцитонин, синтезируемый в щитовидной железе (см. далее), и кальцитриол [1,25(ОН)2-D3] – производное D3(см. главу 7). Все три гормона регулируют уровень Са 2+ , но механизмы их действия различны. Так, главная роль кальцитрио-ла заключается в стимулировании всасывания Са 2+ и фосфата в кишечнике, причем против концентрационного градиента, в то время как паратгормон способствует выходу их из костной ткани в кровь, всасыванию кальция в почках и выделению фосфатов с мочой. Менее изучена роль кальцитонина в регуляции гомеостаза Са 2+ в организме. Следует отметить также, что кальцитриол по механизму действия на клеточном уровне аналогичен действию стероидных гормонов ().Считается доказанным, что физиологическое влияние паратгормона на клетки почек и костной ткани реализуется через систему аденилатциклаза-цАМФ ().

Тиреотропный гормон (ТТГ)

Первичная структура ТТГ была расшифрована в 1971 г., а вскоре были идентифицированы и его высшие структуры. ТТГ является гликопротеином; это гетерополимер, содержащий две (а- и р-) неравнозначные полипептидные цепи с молекулярной массой около 30 kDa. а-Субъединица, содержащая 96 аминокислотных остатков, ТТГ весьма консервативна и почти не имеет межвидовых различий. Биологическая активность ТТГ, как и других гликопротеиновых гормонов, определяется строением [3-субьединииы (112 аминокислотных остатков), которая обеспечивает взаимодействие гормона с рецептором. Вместе с тем свободная р-субъединица неактивна и проявляет биологическую активность только в комплексе с а-субъсдиницей. По мнению ряда авторов, а-субъедини- ца является нс только активатором, но и протектором р-субъединицы от действия протеиназ.

Синтез. Образование ТТГ контролируется гормонами гипоталамуса тирео- либерином и тиреостатином. Тиреолиберин является трипептидом, состоящим из глутаминовой кислоты, гистидина и пролина. Этот гормон стимулирует синтез и секрецию ТТГ в кровяное русло. Тиреостатин блокирует секрецию ТТГ, а также снижает уровень цАМФ в гипофизе. Кроме того, регуляторами синтеза ТТГ являются гормоны щитовидной железы.

Биохимические функции. Гиреотропин контролирует синтез и секрецию гормонов щитовидной железы тироксина и трииодтиронина. Воздействуя по мембрано-опосредованному механизму на клетки щитовидной железы, он стимулирует образование тиреоглобулина — предшественника тиреоидных гормонов.

В статье «Тиреотропный гормон биохимия» использованы материалы:

http://allrefs.net/c26/4bh1w/p65/

http://biokhimija.ru/gormony/tiroksin.html

http://studfile.net/preview/536734/page:5/

http://studme.org/280197/geografiya/tireotropnyy_gormon

Добавить комментарий

Ваш адрес email не будет опубликован.