Синтез тиреоидных гормонов — Динамика тиреоидных гормонов: нормальная физиология

Автор: | 20.05.2021

Содержание

Синтез тиреоидных гормонов

Динамика тиреоидных гормонов: нормальная физиология

Понятие «динамика тиреоидных гормонов» означает комплекс процес­сов синтеза гормонов в щитовидной железе, их транспорта в крови, действия и метаболиз­ма в периферических тканях, а также комплекс регуляторных механизмов, определяющих нормальное обеспечение тканей тиреоидными гормонами. В этом разделе освещается нор­мальная физиология и биохимия динамики тиреоидных гормонов. Нарушения процессов транспорта, действия и метаболизма описываются в разделах, посвященных лаборатор­ным тестам или отдельным заболеваниям.

Синтез и секреция гормонов. Синтез тиреоидных гормонов зависит от поступления в щитовидную железу достаточного количества йода — составной части активных гормо­нов (Т4 и Т3), интактности путей метаболизма йода в железе и одновременного синтеза

Рис. 324-2. Схема путей синтеза и секреции тиреоидных гормонов и механизмов супра- и интратиреоидной регуляции функции щитовидной железы.

Тонкими стрелками показаны пути метаболизма йода; жирными стрелками — стимулирующие влия­ния; пунктиром — ингибирующие влияния.

Обозначен и я : ТРГ — тиреотропин-рилнзинг гормон, ТТГ — тиреотропный гормон, И ПО — йодид-пероксидаза, Прот — тиреоидная протеаза, Пепт — тиреоидная пептидаза, МИТ — монойодтирозин, ДИТ — динодтирозин, T4 — тироксин, Т3 — 3, 5, 3′ — трийодтиронин.

нормального белка, рецептирующего йод, — тиреоглобулина. Секреция достаточного ко­личества гормонов требует в свою очередь как нормальной скорости их синтеза, так и ин­теграции с протекающими в железе процессами гидролиза тиреоглобулина, в результате которых активные гормоны высвобождаются. Йод проникает в щитовидную железу из крови в форме неорганического или органического йодида. Существует два источника его поступления: первый — при дейодировании тиреоидных гормонов или насыщенных йодом агентов, попавших в организм человека; и второй — с пищей, водой или лекарственными препаратами. Раньше для населения континентальной части США считалось нормой пот­ребление с пищей примерно 200 мкг йода; этого было достаточно для поддержания кон­центрации йодида в плазме па уровне приблизительно 0,5 мкг/дл (5 мкг/л). Однако из-за присутствия йода в некоторых пищевых продуктах и широкого распространения йодсодержащих лекарственных средств, витаминных препаратов и антисептиков среднее пот­ребление йода возросло до 1000 мкг в сутки, что привело к соответствующему повышению концентрации йодида в плазме крови. Йодид извлекается из плазмы щитовидной желе­зой, почками, а также слюнными железами и в желудочно-кишечном тракте, но, посколь­ку йодид, выделяющийся в просвет кишечника, подвергается реабсорбции, чистый его кли­ренс осуществляется только щитовидной железой и почками. В сущности щитовидная же­леза и почки конкурируют друг с другом за йодид плазмы. Почечный клиренс зависит в основном от скорости клубочковой фильтрации, и на него не влияют гуморальные факто­ры или концентрация йодида в плазме. Поэтому почки в норме являются пассивными учас­тниками этой конкуренции. Отсюда следует, что соотношение между скоростью поступле­ния йодида в щитовидную железу и скоростью его экскреции с мочой определяется актив­ностью именно щитовидной железы, а не почек.

Процессы синтеза и секреции активных тиреоидных гормонов можно разделить на четыре последовательных этапа (рис. 324-2). Первый включает активный транспорт йоди­да из плазмы в клетку щитовидной железы и в просвет фолликула. Скорость этого процес­са превышает скорость пассивной днффузии йода из железы. В результате щитовидная железа оказывается способной удерживать градиент концентрации для йодида (отноше­ние концентраций щитовидная железа/плазма) на весьма высоком уровне (до 500 и более в определенных условиях). Энергия для транспорта йодида черпается из фосфатных связей и поэтому зависит от окислительного фосфорилирования в железе. Второй этап биосинтеза гормонов включает окисление йодида в более реакционноспособную форму, способную йодировать тирозиновые остатки в молекуле тиреоглобулина — гликопротеида с мол. мас­сой около 650 000, который синтезируется клетками фолликулов. Окисление йодида осу­ществляется йодид-пероксидазой, использующей перекись водорода, которая образуется но ходу окислительного обмена в железе. Йодирование органических структур происхо­дит на границе между клеткой и коллоидом, где этому процессу подвергается в основном свежесинтезированный тиреоглобулин, поступающий путем экзоцитоза в просвет фолли­кула. В результате в составе пептида образуются неактивные предшественники гормонов — монойодтирозин (МИТ) и дийодтирозин (ДИТ). Затем эти йодтирозины вступают в реак­цию окислительной конденсации опять-таки с помощью пероксидазы. Данная реакция протекает внутри молекулы тиреоглобулина и приводит к образованию различных йодтиронинов, включая Т4 и Т3 Хотя в крови и присутствуют небольшие количества тиреогло­булина, большая его часть некоторое время хранится в железе, играя роль запасной формы тиреоидных гормонов, или «прогормона». Высвобождение активных гормонов в кровь происходит путем пиноцитоза фолликулярного коллоида на апикальном краю клетки с образованием коллоидных капелек. Для этого процесса необходимо функционирование микротрубочек. Коллоидные капельки сливаются с тиреоидными лизосомами, образуя «фаголизосомы», в которых тиреоглобулин гидролизуется протеазами и пептидазами. Ко­нечный этап заключается в выделении свободных йодтиронинов — Т4 и Т3 — в кровь. Един­ственным источником эндогенного Т4 служит щитовидная железа. В отличие от этого только около 20% образующегося в норме Т3 поступает из щитовидной железы; остальная его часть образуется во внетиреоидных тканях путем ферментативного отщепления 5′-йода от на­ружного кольца молекулы Т . Неактивные йодтирозины, высвобождающиеся при гидро­лизе тиреоглобулина, отдают свой йод под действием внутритиреоидного фермента — дегалогеназы йодтирозинов. В норме высвобождающийся таким образом йод в основном реутилизируется в синтезе гормонов, но небольшая его доля все же теряется, поступая в кровоток («утечка йода»). В патологических условиях эта доля может возрастать.

Щитовидная железа способна концентрировать и другие одновалентные анионы, та­кие как пертехнетат, который имеется в виде радиоактивного изотопа — натрий [ 99m Тc] пертехнетат. В отличие от йодида пертехнетат очень мало связывается органическими со­единениями. Поэтому он присутствует в щитовидной железе только короткое время. Это свойство наряду с его коротким физическим периодом полураспада делает пертехнетат ценным радионуклидом для получения изображения щитовидной железы с помощью ме­тодов сцинтилляционного сканирования.

Перечисленные выше реакции служат объектом торможения различными химически­ми соединениями. Их обычно называют зобогенными веществами, поскольку в силу своей способности ингибировать синтез гормонов и косвенно стимулировать секре­цию ТТГ они вызывают образование зоба. Некоторые неорганические анионы, в том чис­ле перхлорат и тиоцианат, ингибируют механизм транспорта йодида и тем самым умень­шают доступность субстрата для образования гормонов. Однако развивающиеся в резуль­тате этого зоб и гипотиреоз можно предотвратить или ликвидировать достаточно больши­ми дозами йодида, которые обеспечивают поступление нужных его количеств в железу за счет простой диффузии. Широко используемые антитиреоидные средства, такие как про­изводные тиомочевины и меркаптоимидазола, оказывают на биосинтез гормонов более сложное воздействие. Эти вещества, равно как и некоторые производные анилина, инги­бируют первоначальное окисление (органическое связывание) йодида, снижая долю обра­зующегося ДИТ относительно МИТ и блокируя конденсацию йодтирозинов в гормональ­но-активные йодгиронины. Последняя реакция наиболее чувствительна. Таким образом, синтез гормонально-активных йодтиронинов может быть резко заторможен в условиях лишь небольшого снижения общего захвата йода щитовидной железой. В отличие от эффекта одновалентных анионов зобогенное действие ингибиторов органического связыва­ния йода не преодолевается большими его количествами. Действительно, некоторые сла­бые зобогенные вещества, такие как сульфонамиды и антипирин, при введении вместе с йодидом становятся почему-то даже более активными. Острое введение больших доз само­го йода тоже может приводить к блокаде органического связывания и реакции конденса­ции. В норме это действие (эффект Вольффа — Чайкоффа) транзиторно, но у некоторых здоровых лиц, длительно получающих йод, имеет место постоянное торможение синтеза гормонов, сопровождающееся развитием зоба с гипотиреозом (йодная микседема) или без него. Большинство больных с болезнью Грейвса, особенно перенесшие радиойодтерапию или хирургическую операцию, а также больные с болезнью Хашимото чрезвычайно чув­ствительны к блокирующему действию йодида, и при хроническом приеме йодидов у них развивается гипотиреоз. Точно так же высокую чувствительность обнаруживает и щито­видная железа плода, и поэтому во избежание зобного гипотиреоза у плода беременные женщины не должны получать больших доз йодида. Йодид в больших дозах может инги­бировать и протеолиз тиреоглобулина, т. е. высвобождение гормонов. Этот эффект легче всего проявляется в условиях гиперфункции щитовидной железы, и именно он определяет быстрое терапевтическое действие йодидов у большинства больных гипертиреозом. Ли­тий, вводимый ряду больных с депрессивными состояниями в виде карбонатной соли. ока­зывает несколько эффектов на внутритиреоидный обмен йода, один из которых заключа­ется в торможении секреции гормонов. Большие дозы дексаметазона также ингибируют секрецию гормонов и в сочетании с йодидом могут быстро уменьшать выраженность тирео­токсикоза.

Синтез тиреоидных гормонов и обмен йода

Закладка щитовидной железы происходит на 3-4 неделе эмбрионального развития из энтодермы, как выпячивание стенки глотки между 1 и 2 парами жаберных карманов. Примерно с 10-12 недели беременности щитовидная железа приобретает способность захватывать йод, а спустя короткое время она уже способна синтезировать и секретировать тиреоидные гормоны.

Поступающий с пищей йод быстро и практически полностью всасывается в тонкой кишке как неорганический йодид. Концентрация йодида в плазме крови при нормальном поступлении йода в организм составляет 10-15 мкг/л, при этом общий эстрацеллюлярный пул йода составляет около 250 мкг. Большая часть йода (90%), поступающего в организм, выводится из него с мочой.

Основной функцией щитовидной железы является обеспечение организма тиреоидными гормонами: тироксином (Т4) и трийодтиронином (Т3). В начале йодид за счет работы натрий-йодидного симпортера активно поступает в тироцит против градиента концентрации. Далее йодид достигает апикальной мембраны, окисляется и органифицируется, присоединяясь к тирозильным остаткам тиреоглобулина. Йодирование тиреоглобулина происходит у апикальной мембраны тироцита под действием пероксидазы тироцитов. На очередном этапе синтеза тиреоидных гормонов, после йодирования тирозильных остатков, происходит пространственное изменение структуры тиреоглобулина, в результате чего происходит конденсация йодированных тирозинов с образованием тиреоидных гормонов.

Щитовидная железа является единственной эндокринной железой, которая вследствие постоянно варьирующего поступления субстрата для синтеза гормонов (йода) запасает очень большие количества своего продукта. Так, запаса тиреоидных гормонов, постоянно содержащихся в щитовидной железе, хватило бы примерно на 2 месяца.

При одномоментном поступлении в организм очень большого количества йода (фармакологические дозы) развивается так называемый феномен Вольфа-Чайкова, который подразумевает временную (примерно на 14 дней) блокаду захвата йода щитовидной железой и синтеза тиреоидных гормонов. Этот феномен предотвращает поступление в щитовидную железу избытка йода и синтез избытка тиреоидных гормонов. В прошлом (а в отдельных случаях и в настоящее время) феномен Вольфа-Чайкова использовался для предоперационной подготовки больных токсическим зобом.

Понятие о физиологических и фармакологических дозах йода

ВОЗ совместно с другими международными организациями установила, что суточная потребность в йоде составляет 100-200 мкг (мкг — это миллионная доля грамма) (табл. 1). За всю жизнь человек потребляет около 3-5 граммов йода, что эквивалентно содержимому примерно одной чайной ложки.

Суточные дозы йода до 1000 мкг (1 мг) считаются физиологическими и не могут обусловить развитие какой-либо патологии у здорового человека. Более высокие дозы йода называются фармакологическими. Как правило, такое количество йода человек может получить только с лекарственными препаратами. Некоторые отхаркивающие средства содержат огромное количество йода. Каждая таблетка амиодарона содержит 60 мг йода, что эквивалентно годовой физиологической потребности в этом микроэлементе. Аналогичным образом, того количества йода, которое содержится в одной капле раствора Люголя (6,3 мг йода), хватило бы более чем на месяц, а в 1 мл спиртовой настойки йода (40 мг йода) — примерно на 200 дней.

С целью профилактики и лечения йододефицитных заболеваний используются только физиологические дозы йода (100-200 мкг), которые содержатся в соответствующих лекарственных препаратах и минерально-витаминных комплексах. Использование с этой целью биологически-активных пищевых добавок (БАД) не рекомендуется в связи с отсутствием точной информации о содержании в них йода. При использовании йодированной соли, которое признано основным методом массовой йодной профилактики, в организм человека попадает как раз около 100-200 мкг йода.

Концепция йододефицитных заболеваний

В патологии человека наибольшее значение имеет дефицит йода. В настоящее время признано, что йодный дефицит является естественным и всеобщим природным феноменом. Отсутствие дефицита йода в той или иной популяции может быть связано либо с адекватно проводимой массовой йодной профилактикой, либо со специфическим характером питания, например, как в Японии, где потребляется очень большое количество богатых йодом морепродуктов. Йодный дефицит имеет место на всей территории Российской Федерации, равно как и во многих других странах, в частности, в большинстве стран Европы.

До самого последнего времени йодный дефицит у большинства людей и медиков ассоциировался исключительно с проблемой эндемического зоба. Тем не менее исследования последних нескольких десятилетий показали, что зоб является далеко не единственной и не самой тяжелой проблемой, которую несет с собой йодный дефицит. В середине 80-х годов XX века австралийским ученым Бэзилом Хетцелем была выдвинута концепция йододефицитных заболеваний.

Йододефицитными заболеваниями (ЙДЗ), по определению ВОЗ, обозначаются все патологические состояния, развивающиеся в популяции в результате йодного дефицита, которые могут быть предотвращены при нормализации потребления йода. Недостаточность поступления йода в организм приводит к развертыванию цепи последовательных приспособительных процессов, направленных на поддержание нормального синтеза и секреции гормонов щитовидной железы. Но если дефицит йода сохраняется достаточно долго, происходит срыв механизмов адаптации с последующим развитием ЙДЗ. Этот термин подчеркивает тот факт, что заболевания щитовидной железы являются далеко не единственным и не самым тяжелым последствием дефицита йода (табл. 2).

Гормоны тиреоидной функции

Тиреотропный гормон

Строение

Представляет собой гликопротеин с молекулярной массой 30 кДа, состоит из двух субъединиц α- и β, α-субъединица схожа с таковой гонадотропных гормонов, β-субъединица специфична для ТТГ.

Синтез

Осуществляется в базофильных тиреотрофах гипофиза.

Регуляция синтеза и секреции

Активируют : тиреолиберин, охлаждение (закаливание, обливание холодной водой); также усиливается в вечернее время суток.

Уменьшают : соматостатин, кортизол, тироксин и трийодтиронин (по механизму обратной отрицательной связи).

Механизм действия

Аденилатциклазный, связанный с ингибированием GI-белка и накоплением цАМФ, и кальций-фосфолипидный механизм с образованием инозитол-трифосфата, диацилглицерола и комплекса кальций-кальмодулин.

Мишени и эффекты

Тиреотропный гормон в щитовидной железе:

1. Обеспечивает жизнедеятельность щитовидной железы

  • стимулирует углеводный обмен (гликолиз, ПФП), синтез гетерополисахаридов,
  • повышает синтез белков, фосфолипидов и нуклеиновых кислот,
  • стимулирует васкуляризацию щитовидной железы,
  • стимулирует рост и пролиферацию тиреоидных клеток,

2. Стимулирует гормональную активность щитовидной железы

  • активирует натрий-йодидный транспортер на базолатеральной мембране тиреоцита, что повышает захват йода,
  • активирует анион-транспортный белок на апикальной мембране тиреоцита, что увеличивает переход йода в фооликулярное пространство,
  • активирует все стадии образования трийодтиронина и тироксина, в том числе увеличивает экспрессию гена тиреопероксидазы.

Патология

При уменьшении выработки изменяется масса тела, повышается утомляемость, возникают симптомы гипотиреоза (см ниже).

Йодтиронины

Строение

К гормонам самой щитовидной железы относятся тироксин и трийодтиронин, которые представляют собой йодированные производные аминокислоты тирозина.

Строение гормонов щитовидной железы

Синтез

Осуществляется в фолликулярных клетках щитовидной железы. Йодиды поступают через базолатеральную мембрану в фолликулярную клетку симпортом с ионами Na + , градиент последних создается Na + ,K + -АТФазой, далее перемещаются к апикальной мембране и выходят из клетки в фолликулярное пространство при участии анион-транспортного белка.

На апикальной мембране клеток селен-зависимая гемсодержащая тиреопероксидаза :

  • йодирует остатки тирозина в тиреоглобулине с образованием моно- и дийодпроизводных (МИТ, ДИТ) тирозина,
  • конденсирует часть МИТ и ДИТ до йодтиронинов, при этом доля трийодтиронина (Т3) и тетрайодтиронина (тироксин, Т4) составляет около 30% от всех йодпроизводных.

Синтез тиреоидных гормонов. Роль селена и иода. Участие тиреопероксидазы

Схема реакций синтеза тиреоидных гормонов

Йодированный тиреоглобулин хранится в виде коллоида в просвете фолликула, при тиреотропной стимуляции пиноцитируется фолликулярными клетками, сливается с лизосомами и гидролизуется. Далее три- и тетрайодтиронин секретируются в кровь. В крови гормоны транспортируются специфическим глобулином, а также альбумином.

Неиспользованные моно- и дийодтирозины удерживаются в клетке и дейодируются йодтирозиндегалогеназой. Высвобожденный йодид вновь используется для синтеза гормонов щитовидной железы.

Регуляция синтеза и секреции

Активируют: тиреотропин на этапах поглощения йода, синтеза тиреоглобулина, эндоцитоза и секреции Т3 и Т4 в кровь.

Уменьшают: тироксин и трийодтиронин (по механизму обратной отрицательной связи).

Синтез гормонов также подавляют стрессы, инфекции, травмы, высокие концентрации йода (бесконтрольный прием препаратов KJ), соединения фтора, токсины (пестициды, кадмий, свинец, ртуть).

Механизм действия

Мишени и эффекты

Рецепторы к йодтиронинам имеют все ткани организма. В клетках-мишенях, особенно в печени, тироксин дейодируется и активной формой является трийодтиронин (3,5,3′-производное).

Превращение тироксина в активный 3,5,3′-трийодтиронин происходит при участии деиодиназы 2 типа и нуждается в ионах цинка и селена. Эта реакция ослаблена у плода, новорожденных и престарелых.

Деактивация тироксина в неактивный 3,3′,5′-трийодтиронин (reverse T3, rT3) происходит при участии деиодиназы (тип 3). Этот процесс увеличивают стресс, травмы, низкокалорийная диета. воспалительные процессы (цитокины), инфекции, дисфункция печени и почек, токсины и некоторые лекарства.

Тиреоидные гормоны увеличивают скорость базального метаболизма. Главным эффектом является повышение активности Na + ,K + -АТФазы , что приводит к быстрому расходованию АТФ и по механизму дыхательного контроля запускает катаболизм углеводов и липидов. В митохондриях увеличивается количество АТФ/АДФ-транслоказы и потребление кислорода. Сопутствующим эффектом усиления катаболизма является термогенез (наработка тепла).

У взрослых действие тиреоидных гормонов в отношении углеводов и липидов в основном катаболическое:
Углеводный обмен : Увеличивает гликогенолиз (индукция гликогенфосфорилазы) и аэробное окисление глюкозы.
Липидный обмен : Стимулирует липолиз (индукция гормон-чувствительной липазы), β-окисление жирных кислот, подавляет стероидогенез.

Белковый обмен : Усиливает транспорт аминокислот в клетки. Активирует синтез дифференцировочных белков в ЦНС, гонадах, костной ткани и обусловливает развитие этих тканей.
У детей действие тиреоидных гормонов в целом анаболическое, т.к. трийодтиронин усиливает выделение соматолиберина, что стимулирует секрецию гормона роста. Одновременно он синергичен другим метаболическим эффектам СТГ, что и является причиной низкорослости при гипотиреозе.

Нуклеиновый обмен : Активирует начальные стадии синтеза пуринов и синтеза пиримидинов, стимулирует дифференцировочный синтез РНК и ДНК.

Также трийодтиронин в надпочечниках подавляет синтез катехоламинов, хотя в целом чувствительность тканей к адреналину повышается.

Инактивация тиреоидных гормонов

Деактивация тиреоидных гормонов происходит в тканях-мишенях при действии дейодиназ, последовательно удаляющих от молекулы йод. Далее реакции катаболизма включают дезаминирование или декарбоксилирование боковой цепи или расщепление эфирной связи с образованием неактивных соединений. В печени дейодированные метаболиты связываются с глюкуроновой или серной кислотой и удаляются с желчью.

Патология

Гипофункция

Причина. Развивается при снижении синтеза тиреоидных гормонов в результате недостаточной стимуляции со стороны гипофиза и/или гипоталамуса, при заболевании самой железы, при нехватке необходимых веществ (селен, железо, йод, аминокислоты). Часто причиной выраженного гипотиреоза является болезнь Хашимото , при которой вырабатываются блокирующие антиантитела к рецепторам.

Клиническая картина

Симптомами субклинического гипотиреоза, зачастую неспецифическими, могут быть

  • отечность лица, сухость кожи и волос, ломкость ногтей, увеличение массы тела, бледность, скованность мышц,
  • галакторея у женщин в конце цикла,
  • брадикардия, понижение систолического давления,
  • психическая инертность, депрессия, апатия, вялость, сонливость, утомляемость, запоры,
  • снижение утренней температуры тела до 36,0°-35,5°С и ниже.

У подростков отмечается отставание в физическом развитии, позднее половое созревание, функциональная дебильность, т.е. замедление мышления, снижение успеваемости в школе, неспособность к творческой деятельности, утрата чувства юмора.

При наличии выраженного гипотиреоза:

  • у плодов, новорожденных и детей младшего возраста развивается кретинизм .
  • у взрослых отмечается микседема , у женщин – бесплодие и галакторея (см регуляция синтеза и секреции пролактина),
  • у обоих полов – деменция, психоз.

При лечении используют заместительную терапию левотироксином (L-тироксин).

Гиперфункция

Причина. Большинство случаев выраженного гипертиреоза вызвано наличием активирующих антиантител к рецепторам . В этом случае заболевание носит название болезнь фон Базедова (в отечественной и европейской литературе) или болезнь Грейвса (в американской литературе).

Клиническая картина.

Симптомами субклинического гипертиреоза являются

  • трудность засыпания, эмоциональная лабильность и нервозность (плаксивость),
  • выпадение волос, сухие ногти,
  • неизменность веса на фоне повышения аппетита,
  • тахикардия, мышечная слабость, потливость, влажные ладони.

При более выраженной форме отмечается субфебрильная температура (до 37,5°С), особенно к вечеру, нервное возбуждение, экзофтальм, тремор, диарея, похудание, у женщин бесплодие и скудость месячных.

При лечении используют тиреостатические препараты, которые ингибируют тиреопероксидазу (мерказолил, пропилтиоурацил), радиойодтерапию и хирургическое иссечение участка железы.

Синтез гормонов щитовидной железы

Как синтезируются гормоны щитовидной железы?

Многим известно, что гормоны щитовидной железы играют важнейшую роль в поддержании нормальной скорости метаболизма и внутреннего гомеостаза организма. Но не многие представляют себе, как и из чего синтезируются эти самые гормоны «щитовидки», как еще ее называют в народе.

Также большинство людей даже не задумываются что происходит дальше, когда гормоны были синтезированы в органе. Для самых любопытных я решила написать данную статью и подробно рассказать о механизме синтеза и секреции гормонов одной из самой известных эндокринной железе человека.

А в следующей статье я очень подробно опишу анатомическое и микроскопическое строение щитовидной железы, так что подписывайтесь на обновления блога, чтобы получать ценные статьи о щитовидной железе и здоровье.

Вы наверняка слышали, что для «щитовидки» нужен йод. Да, для того, чтобы гормоны синтезировались в достаточном количестве органу нужен такой минерал, как йод. Щитовидная железа является единственной железой у человека, которая способна кумулировать в себе огромное количество йода. Эта особенность связана с тем, что атом йода является основным компонентом молекулы гормона.

Но не торопитесь капать в молоко раствор йода, предназначенный для дезинфекции ран. Этот йод совершенно не годится для синтеза гормонов. Кроме того, в такое растворе йода очень-очень много и при попадании пары капель такого раствора в организм, произойдет блокада работы щитовидной железы, что может вызвать временное состояние гипотиреоза, т.е. снижения функции железы.

Теперь вы знаете, что много йода — это также нехорошо, как и его недостаток. Тогда какой же йод используется в синтезе? Только органический йод в составе продуктов питания или микродозы в составе препаратов йода, такой как калий йодид или йодомарин. Дозы измеряются в микрограммах, а отличие от антисептического раствора, где количество йода измеряется в граммах.

Стадии синтеза гормонов щитовидной железы

Весь процесс синтеза гормонов щитовидной железы представляется в виде последующих друг за другом биохимических процессов:

  1. окисление йодидов (органификация йодида)
  2. йодирование тирозина в молекуле тиреоглобулина
  3. конденсация
  4. перемещение тиреоглобулина в коллоид фолликула
  5. протеолиз тиреоглобулина с образованием Т3 и Т4
  6. диффузия Т3 и Т4 в кровь

Итак, когда атомы йода попадают в организм человека в виде йодидов, они перемещаются с током крови к клеткам щитовидной железы и моментально захватываются ими с помощью белка переносчика (Na-I насос).

Работа этого переносчика контролируется тиреотропным гормоном, а также общим содержанием йода в организме.

Этот переносчик имеет способность переносить не только йодиды, но радиоизотопы технеция. Это свойство используется в радоизотопном исследовании железы.

После этого с помощью белка пендрина йод перенаправляется через апикальную часть тиреоцита в коллоид. О подробном строении щитовидной железы читайте в этой статье. При недостаточности или генетическом дефекте этого белка-переносчика развивается врожденный синдром Пендрена, который сопровождается признаками гипотиреоза и нейросенсорной тугоухостью. Затем йодиды должны пройти процесс окисления (органификации). Это делается для связывания и удержания йода в железе. Этот процесс органификации происходит при участии перекиси водорода.

Гормон щитовидной железы — это белковая субстанция и основной аминокислотой является L-тирозин, которая входит в состав большой белковой молекулы — тиреоглобулина. Аминокислота L-тирозин имеет структуру фенольного кольца. Тиреоглобулин — это гликопротеид, который является белковым предшественником гормонов «щитовидки». Он синтезируется непосредственно в клетке щитовидной железы и постепенно перемещается к апикальной поверхности клетки, которая обращена в сторону коллоида. Концентрация тиреоглобулина к тиреоидной клетке составляет 75 % от всего содержащегося белка.

Далее в апикальной части тиреоидной клетки в коллоиде с помощью фермента селензависимой тиреоидной пероксидазы происходит йодирование тироксина в молекуле тиреоглобулина, т. е. присоединение атомов йода к остаткам аминокислоты тирозина, которые как бы торчат из большой молекулы тиреоглобулина. Сначала образуются моно- и дийодтирозины. Кстати, этот процесс идет в присутствии железа и при его дефиците могут быть сбои.

Именно к этому ферменту (тиреопероксидазе) вырабатываются антитела (атитела к ТПО) при аутоиммунном тиреоидите, блокируя его работу. Также замедление процесса йодирования тиреоглобулина может быть вызвано дефицитом селена.

Территория России считается селендефицитной, поэтому рекомендуется принимать селенсодержащие добавки для бесперебойной работы щитовидной железы.

Препараты для лечение диффузного токсического зоба — тиреостатики, также воздействую на данный фермент, вызывая его блокаду.

Далее происходит процесс конденсации, т. е. объединение молекул моно- и дийодтирозинов и формирование молекул тиронинов. Тоже при участии фермента тиреопероксидазы. Тиронин получается при присоединении к аминокислоте тирозину второго фенольного кольца. При этом образуются моно-, дийодтиронины, а также активные гормоны Т3 (трийодтиронин) и Т4 (тироксин). Доля последних составляет всего 30 % от всех других составляющих большой молекулы тиреоглобулина.

И вот такая огромная молекула тиреоглобулина отправляется на хранение в коллоид тиреоидного фолликула. Если произойдет так, что работа щитовидной железы будет заблокирована, то ее запасов Т4 и Т3 хватит на один месяц.

При необходимости и стимуляции щитовидной железы, псевдоподии (ворсинки) на апикальной поверхности клетки захватывают определенное количество тиреоглобулина и перемещается обратно в клетку ближе к базальной мембране, где он захватывается лизосомами клетки, а в лизосомах происходит процесс протеолиза, т. е. распада тиреоглобулина на составные части.

При этом образуются гормоны Т3 и Т4, а также моно- и дийодтиронины, которые распадаются на тирозин и йод, который потом используется повторно.

Что происходит с гормонами, когда они попадают в кровь?

Образовавшиеся Т3 и Т4 проходят сквозь клеточную мембрану и попадают в кровь, откуда разносятся по всем органам и тканям. Часть Т4 еще в клетке с помощью дейодиназы превращается в более активную форму Т3. Также Т3 образуется из Т4 уже в тканях, также с помощью фермента дейодиназы. Этот процесс пожет происходить во всех органах, но интенсивнее это происходит в печени и в почках.

При снижении ферментной функции или генетическом дефекте, процесс перехода Т4 в Т3 может быть замедлен и у человека при нормальных уровнях ТТГ и свТ4 может быть существенно снижен уровень свТ3. У некоторых людей это может проявляться симптомами гипотиреоза.

В процессе протеолиза тиреоглобулина в кровь попадают не только Т3 и Т4, а также тирозильные остатки, атомы йода и даже сам тиреоглобулин. Ранее в диагностике аутоиммунных заболеваний щитовидной железы применяли метод определения антител к тиреоглобулину (ат к ТГ), полагая, что его выход связан с разрушением тиреоидной ткани в связи с аутоиммунным процессом. Но как оказалось, что тиреоглобулин попадает в кровь и в норме, поэтому данное исследование упразднили.

После того, как Т4 и Т3 попали в кровь, большая их часть связывается с белками плазмы. Более 99,95 % Т4 и более 99,5 % Т3 находятся к крови в связанном состоянии. Таким образом, гормоны находятся как бы на сохранении, потому что в таком состоянии они неактивны. А активны только оставшиеся 0,05 % Т4 и 0,5 % Т3, которые циркулируют к органам в свободном виде.

Т4 (тироксин) связывается со следующими белками:

  • с тироксинсвязывающим глобулином на 80 %
  • с тироксинсвязывающим преальбумином на 15 %
  • с альбумином плазмы на 5 %

Т3 (трийодтиронин или лиотиронин) связывается со следующими белками:

  • с тироксинсвязывающим глобулином на 90 %
  • с тироксинсвязывающим преальбумином на 5 %
  • с альбумином плазмы на 5 %

Эти белки синтезируются в печени и их концентрация, а значит и связывающая активность напрямую зависит от функции печени. Продукция белков стимулируется эстрогенами и блокируется андрогенами, а также большими дозами глюкокортикоидами. Кроме этого имеются врожденные дефекты синтеза этих белков. Все эти факторы сказываются на концентрации общего уровня Т3 и Т4. Именно поэтому, чтобы получить информацию об истинной работе щитовидной железы, рекомендуется сдавать кровь на свободные фракции гормонов.

Поскольку Т4 — гормон с менее выраженным биологическим действием, чем Т3, то 80 % свободного тироксина метаболизируется, т.е. от молекулы тироксина отщепляется один атом йода. Этот процесс называется монодейодирования и происходит с участием селенозависимой монодейодиназы. В зависимости от того, в каком положении отщепится атом йода, может получится активный свободный Т3 (свТ3) и реверсивный Т3 (рТ3), который практически не имеет биологической активности. Указанный процесс не случайный, а регулируется рядом фактором, но в норме этот процесс протекает с одинаковой частотой.

На долю Т3 образованного из Т4 в периферических тканях, преимущественно в печени, приходится около 80 %, получается, что щитовидная железа выделяет всего 20 % свободного Т3. Именно поэтому при дефекте фермента монодейодиназы снижается уровень свободного Т3 в сыворотке крови и человек может ощущать признаки недостаточности тиреоидных гормонов.

Основное биологическое действие оказывает свободный Т3. Какие именно эффекты оказывают гормоны щитовидной железы, я расскажу уже в следующих статьях. А сегодня вы узнали, как происходит синтез гормонов «щитовидки» и дальнейшее их преобразование.

Гормоны щитовидной железы и их основные функции

Функция щитовидной железы в организме. Синтез гормонов

Функция щитовидной железы в организме напрямую связана с процессом синтеза гормонов и настолько огромна, что трудно представить, как можно жить, если этот орган вдруг начинает болеть. А тем более — если его вынужденны удалить.

Чтобы понять роль щитовидки в эндокринной системе организма, необходимо знать, какие гормоны она синтезирует и на что они влияют.

В тканях щитовидной железы происходит непрерывный процесс синтеза гормонов. Именно они являются тем кнутом, с помощью которого осуществляет своё влияние на организм эта железа внутренней секреции.

Наличие и участие гормонов щитовидной железы в обменных процессах обеспечивают разнообразие функций этой железы.

Если щитовидная железа заболела — происходит сбой в синтезе гормонов и — соответственно, нарушаются многие её функции.

Какие гормоны выделяет щитовидная железа

Для нормального функционирования щитовидной железы необходимо наличие органически связанного йода. Железа умеет его запасать впрок — на десять дней в виде тироксина (Е4). Тироксин — в любой момент может перейти в активный трийодтиронин (T3) и наполнить наш организм энергией. Щитовидка выделяет два типа гормонов:

  • тиреоидные гормоны щитовидной железы — это два йодированных гормона, которые принимают участие в основном обмене организма и называются трийодтиронин (T3) и тироксин (T4). За сутки щитовидная железа производит около 80—100 мкг тироксина (Т4) — это данные из Википедии.
  • тиреокальцитонин — полипептидный гормон, не содержащий йода

Давайте посмотрим, что происходит в щитовидной железе, где и как синтезируются гормоны и что они регулируют.

Где происходит синтез тиреоидных гормонов Т3 и Т4

Давайте посмотрим, как выглядит щитовидная железа в разрезе:

Видите сферические фолликулы (на срезе они имеют вид круга)? Именно в этих тиреоидных фолликулярных А-клетках происходит синтез йодосодержащих гормонов трийодтиронина (T3) и тироксина (T4).

Фолликулярные клетки создают сферу, внутри которой находится коллоид, состоящий из белка тиреоглобулина. Этот белок является основой для синтеза трийодтиронина (T3) и тироксина (T4). Весь процесс синтеза регулируется гипофизом — тиреотропным гормоном (ТТГ). Клетки фолликул обращены ворсинками к коллоиду и проникают в него. Как только из гипофиза поступает команда на синтез тиреоидных гормонов — «завод» в фолликуле начинает работать.

Где происходит синтез тиреокальцитонина

Синтез пептидного гормона тиреокальцитонина происходит в С-клетках щитовидной железы.

С-клетки отличаются от А-клеток наличием большого количества митохондрий

Митохондрии — это заводы по синтезу белка. Именно в них и синтезируется полипептидный гормон кальцитонин.

Предлагаю для наглядности схематический рисунок, где отмечены места синтеза гормонов щитовидной железы (см. ниже).

Как видно на схеме С-клетки находятся рядом с фолликулярными А-клетками. Между ними циркулирует лимфа. Именно её загрязнённость может вызывать функциональные сбои.

Также необходимо учесть, что щитовидная железа и наши миндалины омываются общей лимфой. Любое воспаление одного органа отражается на функции другого. Особенно это касается непосредственного лечения миндалин антибиотиками (сосать таблетку) и разными орошающими спреями с сильнодействующим лекарством.

Норма концентрации гормонов щитовидной железы

Синтез гормонов эндокринной железы зависит от поступления в организм йода. Необходимо поступление 1 мг йода в виде йодидов на протяжении недели, что составляет суточную дозу 150-200 микрограммов йода для нормальной работы щитовидной железы.

Всасывание происходит в кишечнике. Йодиды попадают в кровь и, омывая фолликулы, поступают в щитовидную железу, где их включают в синтез гормонов. Происходит этот процесс под контролем гипофиза.

Предлагаю посмотреть нормальные показатели гормонов щитовидной железы в таблице:

Функция щитовидной железы в организме человека

1. Регуляция энергетического обмена

Именно эта железа внутренней секреции отвечает за наше состояние — энергетику и эмоции. В зависимости от избытка(гипертиреоз) или нехватки (гипотиреоз) гормонов щитовидной железы, у нас наблюдается гиперактивность или, наоборот, состояние «нестояния»: 1 мг тироксина провоцирует возрастание расхода энергии на 1000 ккал/сутки. Тироксин усиливает потребление глюкозы. Расщепляет в печени гликоген. Идёт выброс энергии.

Тиреоидные гормоны отвечают за теплоотдачу тела, терморегуляцию организма (переносимость жары или холода),

2. Регуляция жизненного тонуса и эмоциональной сферы

Гипертиреоз грозит нам истериками, гипотиреоз — депрессией. Если у вас часто наблюдаются истерика или склонность к депрессиям — обратитесь к эндокринологу. Более подробно отклонение функций щитовидной железы описано в статье Лечение щитовидной железы у женщин. Тироксин увеличивает потребление организмом адреналина и у вас пробуждается жизнь. При его нехватке — жизненный тонус снижается, наступает упадок сил и неверие в себя.

3. Регуляция жирового обмена

Основный источник энергии мы получаем от расщепления жиров. Как результат липолиза, освобождается большое количество АТФ, необходимое для получения энергии в организме. При нормальном уровне гормонов человек не толстеет и не худеет, у него вес в норме. Поэтому тироксин можно назвать гормоном стройности.

4. Регуляция роста и развития костной ткани, солевой обмен

Тиреокальцитонин отвечает за то, насколько усвоится организмом кальций. При нехватке тиреокальцитонина кальций не усваивается и развивается остеопороз. Кальций необходим для проведения нервных импульсов мышечными клетками . Прочность нашего скелета напрямую зависит от концентрации тиреокальцитонина. Он же отвечает за утилизацию и вывод «лишнего» кальция, что предотвращает отложение солей. Трийодтиронин участвует в регуляции синтеза гормона роста, который продуцирует гипофиз. Его нехватка отражается на росте, вплоть до его остановки.

5. Регуляция образования эритроцитов и работа сердечно-сосудистой системы

Гормоны описываемой железы усиливают синтез в костном мозге красных кровяных телец, что защищает наш организм от анемии. Также они участвуют в транспортировке необходимых питательных веществ к миокарду, снабжая его необходимыми аминокислотами, кальцием и глюкозой. Это защищает главную сердечную мышцу от преждевременного износа, вовремя обеспечивая её строительными и энергетическими материалами.

6. Регуляция баланса половых гормонов в организме

При нормальной функции щитовидки уровень половых гормонов у женщин находится в балансе. При повышенной (гипертиреоз) функции — увеличивается количество эстрогенов в организме, при пониженной (гипотиреоз) — увеличивается концентрация прогестерона.

Тиреоидные гормоны необходимы для нормального всасывания животного холестерина в кишечнике и синтез собственного холестерина в печени. Холестерин — главный материал для образования стероидных гормонов. Для синтеза половых гормонов необходимы стероиды. Отсюда вывод: при недостатке в организме Т3 и Т4 будет не хватать и материала для образования половых гормонов.

Любой дисбаланс половых гормонов приводит к развитию эндометриоза, мастопатии, фибромиом, нарушения менструального цикла вплоть до его прекращения, бесплодия, длительной послеродовой депрессии (нехватка йода в процессе вынашивания плода).

7. Регуляция работы мозга, интеллектуального развития

Гормоны тироксина и трийодтиронина необходимы для активной работы мозга. Крайний случай их нехватки — развитие кретинизма. Особенно это касается развития плода в утробе матери в период формирования нервной системы и головного мозга.

Немного полезного видео по теме:

Вот такая функция щитовидной железы в организме — контролировать и регулировать практически все системы органов. А для этого необходимо нормальное поступление йодосодержащих продуктов в наш организм для синтеза трёх главных гормонов щитовидной железы:

  • тироксина
  • трийодтиронина
  • тиреокальцитонина
Как я поддерживаю свою щитовидную железу.

Лично я употребляю в пищу фитопрепараты: Гармонию, Динамику, Клинхелп (названия кликабельны, заказать можно в интернет-магазине), содержащие водоросли спирулину, экстракт фукуса, ламинарию, в которых йод находится в органической, натуральной, легко усвояемой форме.

Я чётко понимаю, что с возрастом, деятельность щитовидной железы начинает «затухать», а я не хочу толстеть, впадать в депрессию или истерику. Также я понимаю, что принимая синтетические гормоны, я буду ещё больше усугублять проблему производства собственных гормонов щитовидной железы.

Фитопрепараты с содержанием водорослей мягко оказывают питательную поддержку железе, обеспечивают нормальное функционирование и возобновление этого важного органа.

Надеюсь, эта слишком серьёзная и, возможно, не всегда лёгкая в восприятии статья, помогла вам разобраться, почему у вас бывают разные функциональные сбои в организме.

Желаю вам всегда быть в форме! Здоровья и взаимопонимания!

Синтез и секреция, метаболизм тиреоидных гормонов

Фолликулярные клетки щитовидной железы синтезируют крупный белок-предшественник гормонов (тиреоглобулин), извлекают из крови и накапливают йодид и экспрессируют на своей поверхности рецепторы, которые связывают тиреотропный гормон (тиреотропин, ТТГ), стимулирующий рост и биосинтетические функции тиреоцитов.

Синтез и секреция тиреоидных гормонов

Синтез Т4 и Т3 в щитовидной железе проходит шесть основных этапов:

  1. активный транспорт I- через базальную мембрану в клетку (захват);
  2. окисление йодида и йодирование остатков тирозина в молекуле тиреоглобулина (органификация);
  3. соединение двух остатков йодированного тирозина с образованием йодтиронинов Т3 и Т4 (конденсация);
  4. протеолиз тиреоглобулина с выходом свободных йодтиронинов и йодтирозинов в кровь;
  5. дейодирование йодтиронинов в тиреоцитах с повторным использованием свободного йодида;
  6. внутриклеточное 5′-дейодирование Т4 с образованием Т3.

Для синтеза тиреоидных гормонов необходимо присутствие функционально активных молекул НЙС, тиреоглобулина и тиреоидной пероксидазы (ТПО).

ТиреоглобулинТиреоглобулин представляет собой крупный гликопротеин, состоящий из двух субъединиц, каждая из которых насчитывает 5496 аминокислотных остатков. В молекуле тиреоглобулина содержится примерно 140 остатков тирозина, но только четыре из них расположены таким образом, что могут превращаться в гормоны. Содержание йода в тиреоглобулине колеблется от 0,1 до 1% по весу. В тиреоглобулине, содержащем 0,5% йода, присутствуют три молекулы Т4 и одна молекула Т3.Ген тиреоглобулина, расположенный на длинном плече хромосомы 8, состоит примерно из 8500 нуклеотидов и кодирует мономерный белок-предшественник, в который входит и сигнальный пептид из 19 аминокислот. Экспрессия гена тиреоглобулина регулируется ТТГ. После трансляции тиреоглобулиновой мРНК в шероховатом эндоплазматическом ретикулуме (ШЭР) образовавшийся белок поступает в аппарат Гольджи, где подвергается гликозилированию, и его димеры упаковываются в экзоцитозные пузырьки. Затем эти пузырьки сливаются с апикальной мембраной клетки, и тиреоглобулин выделяется в просвет фолликула. На границе апикальной мембраны и коллоида происходит йодирование остатков тирозина в молекуле тиреоглобулина.

Тиреоидная пероксидазаТПО, связанный с мембраной гликопротеин (молекулярная масса 102 кДа), содержащий группу гемма, катализирует как окисление йодида, так и ковалентное связывание йода с тирозильными остатками тиреоглобулина. ТТГ усиливает экспрессию гена ТПО. Синтезированная ТПО проходит по цистернам ШЭР, включается в экзоцитозные пузырьки (в аппарате Гольджи) и переносится к апикальной мембране клетки. Здесь, на границе с коллоидом, ТПО катализирует йодирование тирозильных остатков тиреоглобулина и их конденсацию.

Транспорт йодидаТранспорт йодида (Г) через базальную мембрану тиреоцитов осуществляется НЙС. Связанный с мембраной НЙС, снабжаемый энергией ионных градиентов (создаваемых Na+, К+ -АТФазой), обеспечивает концентрацию свободного йодида в щитовидной железе человека, в 30-40 раз превышающую его концентрацию в плазме. В физиологических условиях НЙС активируется ТТГ, а в патологических (при болезни Грейвса) — антителами, стимулирующими рецептор ТТГ. НЙС синтезируется также в слюнных, желудочных и молочных железах. Поэтому они также обладают способностью концентрировать йодид. Однако его накоплению в этих железах препятствует отсутствие органификации; ТТГ не стимулирует активность НЙС в них. Большие количества йодида подавляют как активность НЙС, так и экспрессию его гена (механизм ауторегуляции метаболизма йода). Перхлорат также снижает активность НЙС, и поэтому может применяться при гипертиреозе. НЙС транспортирует в тиреоциты не только йодид, но и пертехнетат (TcO4-). Радиоактивный изотоп технеция в виде Tc99mO4- используют для сканирования щитовидной железы и оценки ее поглощающей активности.На апикальной мембране тиреоцитов локализуется второй белковый транспортер йодида — пендрин, который переносит йодид в коллоид, где происходит синтез тиреоидных гормонов. Мутации гена пендрина, нарушающие функцию этого белка, обусловливают синдром зоба с врожденной глухотой (синдром Пендреда).

Йодирование тиреоглобулинаНа границе тиреоцитов с коллоидом йодид быстро окисляется перекисью водорода; эта реакция катализируется ТПО. В результате образуется активная форма йодида, которая присоединяется к тирозильным остаткам тиреоглобулина. Необходимая для этой реакции перекись водорода образуется, по всей вероятности, под действием НАДФ-оксидазы в присутствии ионов кальция. Этот процесс также стимулируется ТТГ. ТПО способна катализировать йодирование тирозильных остатков и в других белках (например, в альбумине и фрагментах тиреоглобулина), но активные гормоны в этих белках не образуются.

Конденсация йодтирозильных остатков тиреоглобулинаТПО катализирует и объединение йодтирозильных остатков тиреоглобулина. Предполагается, что в ходе этого внутримолекулярного процесса происходит окисление двух йодированных остатков тирозина, близость которых друг к другу обеспечивается третичной и четвертичной структурой тиреоглобулина. Затем йодтирозины образуют промежуточный хиноловый эфир, расщепление которого приводит к появлению йодтиронинов. При конденсации двух остатков дийодтирозина (ДИТ) в молекуле тиреоглобулина образуется Т4, а при конденсации ДИТ с остатком монойодтирозина (МИТ) — Т3.Производные тиомочевины — пропилтиоурацил (ПТУ), тиамазол и карбимазол — являются конкурентными ингибиторами ТПО. Из-за своей способности блокировать синтез тиреоидных гормонов эти средства используются при лечении гипертиреоза.

Протеолиз тиреоглобулина и секреция тиреоидных гормоновПузырьки, образующиеся на апикальной мембране тиреоцитов, поглощают тиреоглобулин и путем пиноцитоза проникают в клетки. С ними сливаются лизосомы, содержащие протео-литические ферменты. Протеолиз тиреоглобулина приводит к освобождению Т4 и Т3, равно как и неактивных йодированных тирозинов, пептидов и отдельных аминокислот. Биологические активные Т4 и Т3 выделяются в кровь; ДИТ и МИТ дейо-дируются, и их йодид сохраняется в железе. ТТГ стимулирует, а избыток йодида и литий ингибируют секрецию тиреоидных гормонов. В норме из тиреоцитов в кровь выделяется и небольшое количество тиреоглобулина. При ряде заболеваний щитовидной железы (тиреоидите, узловом зобе и болезни Грейвса) его концентрация в сыворотке значительно возрастает.

Дейодирование в тиреоцитахМИТ и ДИТ, образующиеся в процессе синтеза тиреоидных гормонов и протеолиза тиреоглобулина, подвергаются действию внутритиреоидной дейодиназы (НАДФ-зависимого флавопротеина). Этот фермент присутствует в митохондриях и микросомах и катализирует дейодирование только МИТ и ДИТ, но не Т4 или Т3. Основная часть освобождающегося йодида повторно используется в синтезе тиреоидных гормонов, но небольшие его количества все же просачиваются из тиреоцитов в кровь.В щитовидной железе присутствует также 5′-дейодиназа, которая превращает Т4 в Т3. При недостаточности йодида и гипертиреозе этот фермент активируется, что приводит к увеличению количества секретируемого Т3 и тем самым к усилению метаболических эффектов тиреоидных гормонов.

Нарушения синтеза и секреции тиреоидных гормонов

Дефицит йода в диете и наследственные дефектыПричиной недостаточной продукции тиреоидных гормонов может быть как дефицит йода в диете, так и дефекты генов, кодирующих белки, которые участвуют в биосинтезе Т4 и Т3 (дисгормоногенез). При малом содержании йода и общем снижении продукции тиреоидных гормонов увеличивается отношение МИТ/ДИТ в тиреоглобулине и возрастает доля секретируемого железой Т3. Гипоталамо-гипофизарная система реагирует на дефицит тиреоидных гормонов повышенной секрецией ТТГ. Это приводит к увеличению размеров щитовидной железы (зобу), что может компенсировать дефицит гормонов. Однако если такая компенсация недостаточна, то развивается гипотиреоз. У новорожденных и маленьких детей дефицит тиреоидных гормонов может приводить к необратимым нарушениям нервной и других систем (кретинизм). Конкретные наследственные дефекты синтеза Т4 и Т3 подробнее рассматриваются в разделе, посвященном нетоксическому зобу.

Влияние избытка йода на биосинтез тиреоидных гормоновХотя йодид необходим для образования тиреоидных гормонов, его избыток угнетает три основных этапа их продукции: захват йодида, йодирование тиреоглобулина (эффект Вольфа-Чайкова) и секрецию. Однако нормальная щитовидная железа через 10-14 суток «ускользает» из-под ингибиторных влияний избытка йодида. Ауторегуляторные эффекты йодида предохраняют функцию щитовидной железы от последствий кратковременных колебаний потребления йода.

Влияние избытка йодида имеет важное клиническое значение, так как может лежать в основе индуцированных йодом нарушений функции щитовидной железы, а также позволяет использовать йодид для лечения ряда нарушений ее функции. При аутоиммунном тиреоидите или некоторых формах наследственного дисгормоногенеза щитовидная железа теряет способность «ускользать» из-под ингибирующего действия йодида, и избыток последнего может вызывать гипотиреоз. И наоборот, у некоторых больных с многоузловым зобом, латентной болезнью Грейвса, а иногда и в отсутствие исходных нарушений функции щитовидной железы, нагрузка йодидом может вызывать гипертиреоз (феномен йод-Базедов).

Транспорт тиреоидных гормонов

Оба гормона циркулируют в крови в связанном с белками плазмы виде. Несвязанными, или свободными, остаются только ,0,04% Т4 и 0,4% Т3, и именно эти их количества могут проникать в клетки-мишени. Тремя главными транспортными белками для этих гормонов являются: тироксин-связывающий глобулин (ТСГ), транстиретин (ранее называвшийся тироксин-связывающим преальбумином — ТСПА) и альбумин. Связывание с белками плазмы обеспечивает доставку плохо растворимых в воде йодтиронинов к тканям, их равномерное распределение по тканям-мишеням, а также их высокий уровень в крови со стабильным 7-суточным t1/2 в плазме.

Тироксин-связывающий глобулинТСГ синтезируется в печени и представляет собой гликопротеин семейства серпинов (ингибиторов сериновых протеаз). Он состоит из одной полипептидной цепи (54 кДа), к которой прикреплены четыре углеводные цепи, в норме содержащие примерно 10 остатков сиаловой кислоты. Каждая молекула ТСГ содержит один сайт связывания Т4 или Т3. Концентрация ТСГ в сыворотке составляет 15-30 мкг/мл (280-560 нмоль/л). Этот белок обладает высоким сродством к Т4 и Т3 и связывает около 70% присутствующих в крови тиреоидных гормонов.Связывание тиреоидных гормонов с ТСГ нарушается при врожденных дефектах его синтеза, при некоторых физиологических и патологических состояниях, а также под влиянием ряда лекарственных средств. Недостаточность ТСГ встречается с частотой 1:5000, причем для некоторых этнических и расовых групп характерны специфические варианты этой патологии. Наследуясь как сцепленный с Х-хромосомой рецессивный признак, недостаточность ТСГ поэтому гораздо чаще наблюдается у лиц мужского пола. Несмотря на низкие уровни общих Т4 и Т3, содержание свободных тиреоидных гормонов остается нормальным, что и определяет эутиреоидное состояние носителей данного дефекта. Врожденная недостаточность ТСГ часто ассоциируется с врожденной недостаточностью кортикостероид-связывающего глобулина. В редких случаях врожденного избытка ТСГ общий уровень тиреоидных гормонов в крови повышен, но концентрации свободных Т4 и Т3 опять-таки остаются нормальными, а состояние носителей дефекта — эутиреоидным. Беременность, эстроген-секретирующие опухоли и эстрогенная терапия сопровождаются повышением содержания сиаловой кислоты в молекуле ТСГ, что замедляет его метаболический клиренс и обусловливает повышенный уровень в сыворотке. При большинстве системных заболеваний уровень ТСГ снижается; расщепление лейкоцитарными протеазами уменьшает и сродство этого белка к тиреоидным гормонам. И то и другое приводит к снижению общей концентрации тиреоидных гормонов при тяжелых заболеваниях. Одни вещества (андрогены, глюкокортикоиды, даназол, L-аспарагиназа) снижают концентрацию ТСГ в плазме, тогда как другие (эстрогены, 5-фторурацил) повышают ее. Некоторые из них [салицилаты, высокие дозы фенитоина, фенилбу-тазон и фуросемид (при внутривенном введении)], взаимодействуя с ТСГ, вытесняют Т4 и Т3 из связи с этим белком. В таких условиях гипоталамо-гипофизарная система сохраняет концентрацию свободных гормонов в нормальных пределах за счет снижения их общего содержания в сыворотке. Повышение уровня свободных жирных кислот под влиянием гепарина (стимулирующего липопротеинлипазу) также приводит к вытеснению тиреоидных гормонов из связи с ТСГ. In vivo это может снижать общий уровень тиреоидных гормонов в крови, но in vitro (например, при отборе крови через заполненную гепарином канюлю) содержание свободных Т4 и Т3 повышается.

Транстиретин (тироксин-связывающий преальбумин)Транстиретин, глобулярный полипептид с молекулярной массой 55 кДа, состоит из четырех одинаковых субъединиц, каждая из которых насчитывает 127 аминокислотных остатков. Он связывает 10% присутствующего в крови Т4. Его сродство к Т4 на порядок выше, чем к Т3. Комплексы тиреоидных гормонов с транстиретином быстро диссоциируют, и поэтому транстиретин служит источником легко доступного Т4. Иногда имеет место наследственное повышение сродства этого белка к Т4. В таких случаях уровень общего Т4 повышен, но концентрация свободного Т4 остается нормальной. Эутиреоидная гипертироксинемия наблюдается также при эктопической продукции транстиретина у больных с опухолями поджелудочной железы и печени.

АльбуминАльбумин связывает Т4 и Т3 с меньшим сродством, чем ТСГ или транстиретин, но в силу его высокой концентрации в плазме с ним связано целых 15% тиреоидных гормонов, присутствующих в крови. Быстрая диссоциация комплексов Т4 и Т3 с альбумином делает этот белок основным источником свободных гормонов для тканей. Гипоальбуминемия, характерная для нефроза или цирроза печени, сопровождается снижением уровня общих Т4 и Т3, но содержание свободных гормонов остается нормальным.

При семейной дисальбуминемической гипертироксинемии (аутосомно-доминантном дефекте) 25% альбумина обладают повышенным сродством к Т4. Это приводит к повышению уровня общего Т4 в сыворотке при сохранении нормальной концентрации свободного гормона и эутиреоза. Сродство альбумина к Т3 в большинстве таких случаев не меняется. Варианты альбумина не связывают аналоги тироксина, используемые во многих иммунологических системах определения свободного Т4 (свТ4); поэтому при обследовании носителей соответствующих дефектов можно получить ложно завышенные показатели уровня свободного гормона.

Метаболизм тиреоидных гормонов

В норме щитовидная железа секретирует в сутки примерно 100 нмоль Т4 и всего 5 нмоль Т3; суточная секреция биологически неактивного реверсивного Т3 (рТ3) составляет менее 5 нмоль. Основное количество Т3, присутствующего в плазме, образуется в результате 5′-монодейодирова-ния наружного кольца Т4 в периферических тканях, главным образом в печени, почках и скелетных мышцах. Поскольку Т3 обладает более высоким сродством к ядерным рецепторам тиреоидных гормонов, чем Т4, 5′-монодейодирова-ние последнего приводит к образованию гормона с большей метаболической активностью. С другой стороны, 5-дейодирование внутреннего кольца Т4 приводит к образованию 3,3′,5′-трийодтиронина, или рТ3, лишенного метаболической активности.Три дейодиназы, катализирующие эти реакции, различаются по своей локализации в тканях, субстратной специфичности и активности в физиологических и патологических условиях. Наибольшие количества 5′-дейодиназы 1-го типа обнаруживаются в печени и почках, а несколько меньшие — в щитовидной железе, скелетных и сердечной мышцах и других тканях. Фермент содержит селеноцистеиновую группу, которая, вероятно, и является его активным центром. Именно 5′-дейодиназа 1-го типа образует основное количество Т3 в плазме. Активность этого фермента возрастает при гипертиреозе и снижается при гипотиреозе. Производное тиомочевины ПТУ (но не тиамазол), а также антиаритмическии препарат амиодарон и йодированные рентгеноконтрастные вещества (например, натриевая соль иоподовой кислоты) ингибируют 5′-дейодиназу 1-го типа. Превращение Т4 в Т3 снижается и при недостаточности селена в диете.Фермент 5′-дейодиназа 2-го типа экспрессируется преимущественно в головном мозге и гипофизе и обеспечивает постоянство внутриклеточного содержания Т3 в ЦНС. Фермент обладает высокой чувствительностью к уровню Т4 в плазме, и снижение этого уровня сопровождается быстрым возрастанием концентрации 5′-дейодиназы 2-го типа в головном мозге и гипофизе, что поддерживает концентрацию и действие Т3 в нейронах. И наоборот, при повышении уровня Т4 в плазме содержание 5′-дейодиназы 2-го типа снижается, и клетки мозга оказываются до некоторой степени защищенными от эффектов Т3. Таким образом, гипоталамус и гипофиз реагируют на колебания уровня Т4 в плазме изменением активности 5′-дейодиназы 2-го типа. На активность этого фермента в мозге и гипофизе влияет также рТ3. Альфа-адренергические соединения стимулируют 5′-дейодиназу 2-го типа в бурой жировой ткани, но физиологическое значение этого эффекта остается неясным. В хориальных мембранах плаценты и глиальных клетках ЦНС присутствует 5-дейодиназа 3-го типа, превращающая Т4 в рТ3, а Т3 — в 3,3′-дийодтиронин (Т2). Уровень дейодиназы 3-го типа возрастает при гипертиреозе и снижается при гипотиреозе, что предохраняет плод и головной мозг от избытка Т4.В целом, дейодиназы выполняют троякую физиологическую функцию. Во-первых, они обеспечивают возможность местной тканевой и внутриклеточной модуляции действия тиреоидных гормонов. Во-вторых, они способствуют адаптации организма к меняющимся условиям существования, например к дефициту йода или хроническим заболеваниям. В-третьих, они регулируют действие тиреоидных гормонов на ранних стадиях развития многих позвоночных — от амфибий до человека.

Дейодированию подвергается около 80% Т4:35% превращается в Т3 и 45% — в рТ3. Остальная его часть инактивируется, соединяясь с глюкуроновой кислотой в печени и выделяясь с желчью, а также (в меньшей степени) путем соединения с серной кислотой в печени или почках. Другие метаболические реакции включают дезаминирование аланиновой боковой цепи (в результате чего образуются производные тироуксусной кислоты с низкой биологической активностью), декарбоксилирование или расщепление эфирной связи с образованием неактивных соединений.

Развитию гипотиреоза у взрослых может предшествовать увеличение размеров щитовидной железы- зоб

Простое увеличение щитовидной железы — это «попыт­ка» организма компенсировать сниженное образова­ние тиреоидных гормонов и является следствием повышения уровня тиреотропина. Нарушение любого из этапов синтеза гормонов, связанных с недостатком иодидов, нарушением их транспорта, йодирования тирозинов, нарушениями реакции конденсации, не­достаточностью дейодиназы, дефектами в структуре транспортных белков может вызывать развитие простого зоба у взрослых людей. Простой зоб можно лечить экзогенными тиреоидными гормонами. При специ­фических формах зоба рекомендуют увеличение или ограничение потребления йода.

Любое из приведенных выше нарушений синтеза или транспорта гормонов приводит к дефициту свободных Т3 или Т4, и обусловливает появление клинического состояния, известного как гипотиреоз. Однако гипотиреоз не всегда связан только с недоста­точностью функций щитовидной железы. Он может развиться и при нарушениях функций гипофиза или гипо­таламуса. При гипотиреозе снижаются основной об­мен, а также скорость других процессов, зависящих от тиреоидных гормонов (см табл. 11.10 ).

Гипотиреоз у плода и новорожденного приводит к нарушению роста и развития.

Проявления недостаточности гормонов щитовидной железы зависят от возраста, в котором возникает гипоти­реоз. Наиболее неблагоприятным для дальнейшего развития ребенка является гипотиреоз, развивающийся у плода или сразу после рождения. Гипотиреоз у плодов или новорожденных приводит к кретинизму, который характеризуется множествен­ными врожденными нарушениями и тяжелой не­обратимой задержкой умственного развития.

При возникно­вении гипотиреоза у детей старшего возраста на­блюдается отставание в росте без задержки умствен­ного развития. Различные формы гипотиреоза лечат заместительным введением тиреоидных гормонов.

Увеличение размеров щитовидной железы может быть признаком гиперфункции

Гипертиреоз, или тиреотоксикоз это состояние, обусловленное из­быточным образованием гормонов щитовидной железы. Среди множества форм этой патологии, наиболее известной является диффузный токсический зоб (болезнь Грейвса , Базедова болезнь) аутоиммунное заболевание, связанное с образованием тиреоид-стимулирующего иммуноглобулина (IgG), действующего подобно ТТГ и активи­рующего рецептор тиреотропина.

При болезни Грейвса наблюдается диффузное разрастание щитовид­ной железы и избыточная неконтролируемая про­дукция Т3 и Т4. Проявления гипертиреоза включают многосистемные сдвиги. Одним из признаком болезни Грейва является экзофтальм – выпячивание глазных яблок, связанное с набуханием мышц. Лечение гипертиреоза, или болезни Грейвса, состоит в подавлении образования гормонов, что достигается примене­нием антитиреоидных средств, блокированием функции железы радиоактивным изотопом йода (та­ким, как 1311) или комбинацией этих двух приемов. Иногда производят хирургическое удаление железы.

Увеличение размеров щитовидной железы может быть следствием применения антитиреоидных средств.

Большинство лекарственных препаратов, тормозящих функцию щитовидной железы оказывают влияние на механизм йодного насоса по конкурентному принципу или блокируют органификацию йода. Многие моновалентные анионы конкурирует с йодидами за активный транспорт в щитовидную железу и тем самым ингибируют поступление йода в железу. Этот ингибирующий эффект может снизить введением дополнительного количества иодидов. К таким анионам относятся хлорат, пертехнетат, периодат, дииодат, нитрат и перхлорат..

Длительное применение антитиреоидных препаратов приводит к увеличению размеров щитовидной железы. Некоторые овощи содержат вещества, обладающие ингибирующим действием на функции щитовидной железы. Описаны «капустные» зобы у вегетарианцев. Из капусты и брюквы выделены предшественники (прогоитрины) и факторы, превращающие эти предшественники в активные вещества (гоитрины) , тормозящие образование гормонов щитовидной железы.

Учитывая способность гормонов щитовидной железы всасываться в желудочно-кишечном тракте, использование ткани щитовидной железы в питании может быть причиной гипертиреоидных состояний.

Добавить комментарий

Ваш адрес email не будет опубликован.