Секрецию гормонов осуществляют железы — Понятие о железах внутренней секреции, особенности их по сравнению с железами внешней секреции

Автор: | 20.05.2021

Секрецию гормонов осуществляют железы

Понятие о железах внутренней секреции, особенности их по сравнению с железами внешней секреции. Гормоны и гормоноподобные вещества.

Эндокринология — наука о железах внутренней секреции (ЖВС), гормонах и гормональной регуляции процессов жизнедеятельности.

Датой рождения эндокринологии считается 1849 г., когда Л.Бертольд подсадкой семенников петуха ликвидировал симптомы кастрации. Медицинское значение эндокринологии связано с лечением расстройств функций ЖВС. При ряде заболеваний — коллагенозы, язвы, артриты, дерматиты и др. эндокринные расстройства составляют фон, а иногда и основу болезни.

Различают два типа ЖВС. Собственно эндокринные железы (гипофиз, надпочечники, вилочковая, щитовидная и околощитовидные железы, островковый аппарат поджелудочной железы, яичники, яички, плацента, эпифиз) — это самостоятельные органы с особой морфологической структурой.

Второй тип— это железистые клетки, синтезирующие гормоны и гормоноподобные вещества. Они расположены среди клеточных элементов выполняющих другую функцию. Примером последних являются эндокринные клетки желудка, кишечника (G-клетки выделяют гастрин, S-клетки — секретин), печени. Иногда их называют паракринными. Предполагают, что вырабатываемые ими гормоны действуют местно.

Критериями принадлежности биологически активных веществ к гормонам являются:

1. Исчезновение физиологических эффектов гормона (выпадение) после удаления органа, секретирующего гормон;

2. Устранение явления «выпадения» после заместительной терапии;

3. Специфическое гормональное действие очищенного препарата.

По химической структуре гормоны классифицируют на:

1) стероидные (кортикостероиды, андрогены, -эстрогены).

2) производные тирозина (норадреналин, тироксин),

3) белковые и пептидные (глюкагон. паратгормон. инсулин и др.).

4) производные жирных кислот (простагландины).

По способу воздейстаия на клетку гормоны делят на:

а) пассивно проникающие через мембрану клетки и взаимодействующие с внутриклеточными структурами (стероиды, тироксин),

б) оказывающие эффект при взаимодействии с поверхностью клетки (белковые и полипептидные гормоны, катехоламины).

Близко к гормонам стоят биологически активные вещества, выделяемые паракринными железами. Их называют низкомолекулярными полипептидными гормонами (НПГ). Английский гистохимик Пирс назвал клетки, выделяющие низкомолекулярные полипептидные гормоны — АРUD-клетками (arnine precursor uptake and de-carboxylation). Предполагается, что эти клетки накапливают аминокислоты — предшественники гормонов для быстрой реализации местного эффекта гормонального воздействия. Помимо местного действия секретируемые АРUD-клетками вещества меняют активность структур головного мозга, участвуют в регуляции синтеза и выделения тропных гормонов гипофиза. Таким образом, эндокринный аппарат включает себя железы и рассеянные железистые клетки, продуцирующие гормоны.

Гормоны осуществляют свой эффект через регуляцию внутриклеточных процессов. Они обладают широким спектром действия на внутриклеточные процессы; способны изменять функцию и структуру клеток, тканей и органов, их физиологию и морфологию. Гормоны изменяют фундаментальные процессы жизнедеятельности организма, регулируют рост и дифференцировку тканей, формирование пола и размножение, адаптацию и поддержание метаболического гомеостаза, на поведение и психику.

Все процессы жизнедеятельности организма строго согласованы между собой по скорости, времени и месту протекания. В организме человека эту согласованность осуществляют внутриклеточные и межклеточные механизмы регуляции, важнейшую роль в которых играют гормоны и нейромедиаторы.. Вещества, которые выделяются из пресинаптических нервных окончаний в синаптическую щель и вызывают биологический эффект, связываясь с рецепторами постсинаптической мембраны, называют нейромедиаторами.

Функциональная активность эндокринной железы может регулироваться «субстратом», на который направлено действие гормона. Так, глюкоза стимулирует секрецию инсулина из клеток панкреатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови, активируя ее транспорт в мышцы и печень. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается. Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция и фосфатов в крови. Паратиреоидный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в результате чего возрастает концентрация кальция в плазме крови. Кальцитонин, напротив, стимулирует поступление кальция и фосфатов в костную ткань, в результате чего концентрация минеральных веществ в крови снижается. При высокой концентрации кальция в крови подавляется секреция паратиреоидного гормона и стимулируется секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется.

Такая регуляция постоянства внутренней среды организма, происходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т.п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т.д., должна существовать связь между эндокринными железами и нервной системой.

Основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза. Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона (соматотропин — гормон роста), пролактина, гонадотропного гормона, (гонадотропины — лютеинизирующий и фолликулостимулирующий), а также адрено-кортикотропного гормона (АКТГ, кортикотропин). Статины оказывают на гипофиз влияние, противоположное действию либеринов — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.

Молекула соматолиберина является самой крупной среди либеринов, она состоит из 15 аминокислотных остатков; самая маленькая молекула — трипептид — у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков.

Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих «сверху вниз», осуществляется гормонами «исполнительных» желез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответствующего тропного гормона; при гиперфункции железы секреция соответствующего тропина подавляется.

Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипоталамус будет дифференцироваться по женскому типу.

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин-II стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стероидогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т.д.

В задней доле гипофиза (нейрогипофиз) депонируются антидиуретический гормон (вазопрессин) и окситоцин. Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе (в супраоптическом и паравентрикулярном ядрах), затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.

Характер процессов, протекающих в ЦНС, во многом определяется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти регуляторные системы дополняют друг друга.

Железы внутренней секреции

Физиология желез внутренней секреции

Физиология внутренней секреции — раздел физиологии, который изучает закономерности синтеза, секреции, транспорта физиологически активных веществ и механизмы их действия на организм.

Эндокринная система — функциональное объединение всех инкреторных клеток, тканей и желез организма, осуществляющих гормональную регуляцию.

Железы внутренней секреции (эндокринные железы) выделяют гормоны непосредственно в межклеточную жидкость, кровь, лимфу и церебральную жидкость. Совокупность эндокринных желез образует эндокринную систему, в которой можно выделить несколько составляющих частей:

  • собственно железы внутренней секреции, не имеющие других функций. Продуктами их деятельности являются гормоны;
  • железы смешанной секреции, выполняющие наряду с эндокринной и другие функции: поджелудочная, вилочковая и половые железы, плацента (временная железа);
  • железистые клетки, локализующиеся в различных органах и тканях и секретирующие гормоноподобные вещества. Совокупность этих клеток образует диффузную эндокринную систему.

Эндокринные железы подразделяются на группы. По их морфологической связи с ЦНС они делятся на центральные (гипоталамус, гипофиз, эпифиз) и периферические (щитовидная, половые железы и др.).

Таблица. Железы внутренней секреции и их гормоны

Железы

Выделяемые гормоны

Функции

Либерины и статины

Регуляция секреции гипофизарных гормонов

Тройные гормоны (АКТГ, ТТГ, ФСГ, ЛГ, ЛТГ)

Регуляция деятельности щитовидной, половых желез и надпочечников

Регуляция роста организма, стимуляция белкового синтеза

Вазопрессин (антидиуретический гормон)

Влияет на интенсивность мочевыделения,регулируя количество выделяемой организмом воды

Тиреоидные (йодосодержащие) гормоны — тироксин и др.

Повышают интенсивность энергетического обмена и роста организма, стимуляция рефлексов

Контролирует обмен кальция в организме, «сберегая» его в костях

Регулирует концентрацию в крови кальция

Поджелудочная железа (островки Лангерганса)

Снижение уровня глюкозы в крови, стимуляция печени на превращение глюкозы в гликоген для запасания, ускорение транспорта глюкозы в клетки (кроме нервных клеток)

Повышение уровня глюкозы в крови, стимулирует быстрое расщепление гликогена до глюкозы в печени и превращение белков и жиров в глюкозу

Повышение уровня глюкозы в крови (поступление из печени дня покрытия энергетических затрат); стимуляция сердцебиения, ускорение дыхания и повышение кровяного давления

Одновременное повышение глюкозы в крови и синтеза гликогена в печени влияют 10 жировой и белковый обмен (расцепление белков) Устойчивость к стрессу, противовоспалительное действие

Увеличение натрия в крови, задержка жидкости в организме, увеличение кровяного давления

Эстрогены /женские половые гормоны), андрогены (мужские половые

Обеспечивают половую функцию организма, развитие вторичных половых признаков

Свойства, классификация, синтез и транспорт гормонов

Гормоны — вещества, выделяемые специализированными эндокринными клетками желез внутренней секреции в кровь и оказывающие специфическое действие на ткани-мишени. Тканями-мишенями называются ткани, обладающие очень высокой чувствительностью к определенным гормонам. Например, для тестостерона (мужского полового гормона) органом-мишенью являются семенники, а для окситоцина — миоэпителий молочных желез и гладкие мышцы матки.

Гормоны могут оказывать несколько эффектов на организм:

  • метаболический эффект, проявляющийся в изменении активности синтеза ферментов в клетке и в повышении проницаемости мембран клеток для данного гормона. При этом изменяется метаболизм в тканях и органах-мишенях;
  • морфогенетичеекий эффект, заключающийся в стимуляции роста, дифференцировки и метаморфоза организма. В этом случае происходят изменения в организме на генетическом уровне;
  • кинетический эффект заключается в активации определенной деятельности исполнительных органов;
  • коррегирующий эффект проявляется изменением интенсивности функций органов и тканей даже в отсутствие гормона;
  • реактогенный эффект связан с изменением реактивности ткани к действию других гормонов.

Таблица. Характеристика гормональных эффектов

Существует несколько вариантов классификации гормонов. По химической природе гормоны подразделяются на три группы: полипептидные и белковые, стероидные и производные аминокислоты тирозина.

По функциональному значению гормоны также подразделяют на три группы:

  • эффекторные, действующие непосредственно на органы-мишени;
  • тропные, которые вырабатываются в гипофизе и стимулируют синтез и выделение эффекторных гормонов;
  • регулирующие синтез тропных гормонов (либерины и статины), которые выделяются нейросекреторными клетками гипоталамуса.

Гормоны, имеющие различную химическую природу, обладают общими биологическими свойствами: дистантностью действия, высокой специфичностью и биологической активностью.

Стероидные гормоны и производные аминокислот не обладают видовой специфичностью и оказывают одинаковое действие на животных разных видов. Белковые и пептидные гормоны обладают видовой специфичностью.

Белково-пептидные гормоны синтезируются в рибосомах эндокринной клетки. Синтезированный гормон окружается мембранами и выходит в виде везикулы к плазматической мембране. По мере продвижения везикулы гормон в ней «дозревает». После слияния с плазматической мембраной везикула разрывается и гормон выделяется в окружающую среду (экзоцитоз). В среднем период от начала синтеза гормонов до их появления в местах секреции составляет 1-3 ч. Белковые гормоны хорошо растворимы в крови и не требуют специальных переносчиков. Они разрушаются в крови и тканях с участием специфических ферментов — протеиназ. Полупериод их жизни в крови составляет не более 10-20 мин.

Стероидные гормоны синтезируются из холестерина. Полупериод их жизни находится в пределах 0,5-2 ч. Для этих гормонов имеются специальные переносчики.

Катехоламины синтезируются из аминокислоты тирозина. Полупериод их жизни очень короткий и не превышает 1-3 мин.

Кровь, лимфа и межклеточная жидкость транспортируют гормоны в свободном и связанном виде. В свободном виде переносится 10% гормона; в связанном с белками крови — 70-80% и в адсорбированном на форменных элементах крови — 5-10% гормона.

Активность связанных форм гормонов очень низкая, так как они не могут взаимодействовать со специфическими для них рецепторами на клетках и тканях. Высокой активностью обладают гормоны, находящиеся в свободном виде.

Разрушаются гормоны под влиянием ферментов в печени, почках, в тканях-мишенях и самих эндокринных железах. Выводятся гормоны из организма через почки, потовые и слюнные железы, а также желудочно-кишечный тракт.

Регуляция деятельности желез внутренней секреции

В регуляции деятельности желез внутренней секреции принимают участие нервная и гуморальная системы.

Гуморальная регуляция — регуляция при помощи различных классов физиологически активных веществ.

Гормональная регуляция — часть гуморальной регуляции, включающая регуляторные эффекты классических гормонов.

Нервная регуляция осуществляется в основном через гипоталамус и выделяемые им нейрогормоны. Нервные волокна, иннервирующие железы, влияют только на их кровоснабжение. Поэтому секреторная активность клеток может изменяться только под влиянием определенных метаболитов и гормонов.

Гуморальная регуляция осуществляется посредством нескольких механизмов. Во-первых, прямое влияние на клетки железы может оказывать концентрация определенного вещества, уровень которого регулируется данным гормоном. Например, секреция гормона инсулина увеличивается при повышении в крови концентрации глюкозы. Во-вторых, деятельность одной железы внутренней секреции могут регулировать другие железы внутренней секреции.

Рис. Единство нервной и гуморальной регуляции

В связи с тем что основная часть нервных и гуморальных путей регуляции сходится на уровне гипоталамуса, в организме образуется единая нейроэндокринная регуляторная система. И основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза. Нервные импульсы, поступающие в гипоталамус, активируют секрецию рилизинг-факторов (либеринов и статинов). Органом-мишенью для либеринов и статинов является передняя доля гипофиза. Каждый из либеринов взаимодействует с определенной популяцией клеток аденогипофиза и вызывает в них синтез соответствующих гормонов. Статины оказывают на гипофиз противоположное действие, т.е. подавляют синтез определенных гормонов.

Таблица. Сравнительная характеристика нервной и гормональной регуляции

Нервная регуляция

Гормональная регуляция

Филогенетически более молодая

Точное, локальное действие

Быстрое развитие эффекта

Контролирует преимущественно «быстрые» рефлекторные ответные реакции всего организма или отдельных структур на действие различных раздражителей

Филогенетически более древняя

Диффузное, системное действие

Медленное развитие эффекта

Контролирует преимущественно «медленные» процессы: деление и дифференцировку клеток, обмен веществ, рост, половое созревание и т.д.

Примечание. Оба вида регуляции взаимосвязаны и влияют друг на друга, образуя единый скоординированный механизм нервно-гуморальной регуляции при ведущей роли нервной системы

Рис. Взаимодействие желез внутренней секреции и нервной системы

Взаимосвязи в эндокринной системе могут происходить и по принципу «плюс-минус взаимодействия». Этот принцип впервые был предложен М. Завадовским. Согласно этому принципу, железа, продуцирующая гормон в избыточном количестве, оказывает тормозящее действие на его дальнейшее выделение. И наоборот, недостаток определенного гормона способствует усилению его секреции железой. В кибернетике такая связь называется «обратной отрицательной связью». Эта регуляция может осуществляться на разных уровнях с включением длинной или короткой обратной связи. Факторами, подавляющими выделение какого-либо гормона, могут быть концентрация в крови непосредственно гормона или продуктов его метаболизма.

Эндокринные железы взаимодействуют и по типу положительной связи. При этом одна железа стимулирует другую и получает от нее активирующие сигналы. Такие взаимосвязи типа «плюс-плюс взаимодействия» способствуют оптимизации метаболима и быстрому выполнению жизненно важного процесса. При этом, после достижения оптимального результата, для предотвращения гиперфункции желез включается система «минус взаимодействия». Смена таких взаимосвязей систем постоянно происходит в организме животных.

Глава 2. Железы внутренней секреции, гормоны, механизмы их действия

Чтобы понять, как функционируют эндокринные органы, и в частности щитовидная железа, необходимо кратко рассмотреть механизм действия гормонов.

Схема расположения эндокринных органов

Рис. 1. Схема расположения эндокринных органов

Эндокринную функцию организма обеспечивают системы, в которые входят:

1) эндокринные железы, секретирующие гормоны;

2) гормоны и различные пути их транспортировки;

3) соответствующие органы или ткани-мишени, отвечающие на действие гормонов.

Эндокринная система поддерживает постоянство внутренней среды организма, необходимое для нормального течения физиологических процессов.

Железы внутренней секреции представляют собой специализированные органы, имеющие железистое строение. Различают железы только с внутренней секрецией (гипофиз, надпочечники, щитовидная железа, околощитовидные железы) и смешанные – с внутренней и внешней секрецией. Примером может служить поджелудочная железа. Ее внешняя секреция заключается в выработке пищеварительных ферментов, которые по специальному протоку поступают в двенадцатиперстную кишку, а внутренняя секреция состоит в том, что в специализированных бета-клетках панкреатических островков (Лангерганса) вырабатывается гормон инсулин, поступающий непосредственно в кровь и регулирующий уровень сахара в крови. Половые железы также осуществляют внутреннюю и внешнюю секрецию.

Название и расположение желез внутренней секреции, продуцируемые ими гормоны, химическая природа последних представлены в табл. 1.

Таблица 1. Гормоны желез внутренней секреции (Потемкин В. В., 1986)

Окончание табл. 1

Гормоны желез внутренней секреции

Термин «гормон», в переводе с греческого означающий «возбуждаю», «побуждаю», был введен в практику Бейлиссом и Старлингом. В январе 1902 г. они провели свой знаменитый, ставший классическим опыт, который убедительно доказал участие гуморального фактора в регуляции секреторной деятельности поджелудочной железы. Бейлисс и Старлинг считали гормоном любое вещество, в норме продуцируемое клетками какой-либо части организма и переносимое кровью к отдаленным частям, на которые оно действует для блага организма в целом.

В настоящее время гормоны определяют как высокоактивные вещества, образующиеся в железах внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма. Их называют также химическими посредниками, которые секретируются непосредственно в кровоток специализированными клетками, способными синтезировать и высвобождать гормоны в ответ на специфические сигналы.

По химическому строению гормоны делятся на:

1) гормоны – производные аминокислот;

2) белковые и полипептидные гормоны;

3) стероидные гормоны.

По физиологическому действию гормоны делят на пусковые и исполнители. К пусковым гормонам (активаторам деятельности других эндокринных желез) относятся нейрогормоны гипоталамуса и тропные гормоны гипофиза. Гормоны-исполнители оказывают непосредственное действие на основные функции организма.

Гормоны отличаются от других биологически активных веществ следующими свойствами:

1) очень высокой биологической активностью;

2) дистанционным характером действия;

3) строгой специфичностью.

Высокая биологическая активность гормонов характеризуется тем, что, находясь в крови в ничтожно малых количествах, они оказывают выраженное действие.

Дистанционный характер действия гормонов заключается в том, что точки приложения их действия располагаются обычно далеко от места образования гормона в эндокринной железе.

Гормоны отличаются строгой специфичностью действия. Это значит, что реакции органов, тканей и клеток на гормоны строго избирательны. Каждый гормон оказывает действие только в определенных органах и тканях, так называемых органах-мишенях (тканях-мишенях). Гормон узнает и взаимодействует со своим органом-мишенью потому, что в этих органах имеются особые соединения – рецепторы. Рецепторы – это информационные белковые молекулы, распознающие и трансформирующие гормональный сигнал в гормональное действие. К настоящему времени идентифицировано более 60 рецепторов. Для стероидов (гормонов коры надпочечников) и тиреоидных гормонов (гормонов щитовидной железы), легко проникающих через мембрану, рецепторные белки расположены внутри клетки. Рецепторы для белковых гормонов и катехоламинов, которые не могут пройти через клеточную мембрану, расположены на поверхности клетки.

Гипоталамус и гипофиз представляют собой единую систему управления периферическими эндокринными железами.

Гипоталамус – это часть мозга, обладающая свойствами нервной и эндокринной систем. В гипоталамус поступает обширный поток информации от органов чувств и внутренних органов. В состав нейросекреторных ядер гипоталамуса входят так называемые крупноклеточные и мелкоклеточные ядра. Первые выделяют гормоны окситоцин и вазопрессин, которые по нервным стволам транспортируются в заднюю долю гипофиза, накапливаются там и по мере надобности используются для регуляции деятельности почек и матки.

Схема регуляции гипоталамо-гипофизарно-тиреоидной системы

Рис. 2. Схема регуляции гипоталамо-гипофизарно-тиреоидной системы

Иные функции выполняют мелкоклеточные ядра гипоталамуса. Они способны вырабатывать так называемые рилизинг-гормоны, или, правильнее, рилизинг-факторы (разрешающие факторы). Рилизинг-факторы по венозной системе достигают гипофиза и регулируют выделение гормонов последнего.

Регуляция деятельности гипофиза гормонами мелкоклеточных ядер гипоталамуса осуществляется по антагонистическому принципу. Одна группа факторов стимулирует выделение гормонов гипофиза (рилизинг-факторы, или либерины), а другая – тормозит (статины). Известны следующие факторы: кортиколиберин, стимулирующий секрецию адренокортикотропного гормона гипофиза; тиролиберин, усиливающий выделение тиреотропного гормона гипофиза; соматолиберин и соматостатин (первый стимулирует выделение соматотропного гормона гипофиза – гормона роста, а второй – тормозит); меланолиберин и меланоцитостатин и др.

Гипофиз является центральной эндокринной железой, в которой вырабатываются так называемые тропные гормоны, регулирующие функцию периферических желез. Это сложный эндокринный орган, расположенный в основании головного мозга – в так называемом турецком седле. Он состоит из аденогипофиза, большую часть которого составляет передняя доля железы, и нейрогипофиза, представленного его задней долей.

В передней доле (аденогипофизе) вырабатываются тропные гормоны:

• гормон роста, который регулирует процессы роста организма, синтеза белка, глюкозы и распада жира;

• кортикотропин, стимулирующий синтез глюкокортикоидов в коре надпочечников;

• тиреотропин – стимулятор синтеза тиреоидных гормонов щитовидной железы;

• гонадотропин, фолликулотропин, регулирующие синтез мужских и женских половых гормонов;

• пролактин – гормон, регулирующий лактацию.

В задней доле гипофиза (нейрогипофизе) скапливаются вазопрессин и окситоцин. Вазопрессин, или антидиуретический гормон, регулирует водный обмен и тонус сосудов. Окситоцин повышает тонус гладкой мускулатуры матки, регулирует родовой акт и выделение молока грудными железами.

Периферические эндокринные железы делятся на две группы.

Первую составляют железы, функция которых регулируется тропными гормонами аденогипофиза. Их называют аденогипофиззависимыми железами, или железами-мишенями. К ним относятся щитовидная железа, корковое вещество надпочечников, эндокринные части половых желез. Взаимоотношения между аденогипофизом и железами-мишенями основываются на принципе «обратной связи». Например, аденогипофиз выделяет в кровь тиреотропный гормон, который стимулирует выделение гормона щитовидной железы – тироксина. Поступивший в кровь тироксин угнетает выделение тиреотропного гормона гипофиза.

Вторую группу эндокринных периферических желез составляют железы, функция которых не зависит от деятельности гипофиза. Эти железы называют аденогипофизнезависимыми. Они функционируют в автономном режиме. К ним относятся околощитовидные железы, эндокринная часть поджелудочной железы, мозговое вещество надпочечников, эндокринные клетки вилочковой железы.

В тимусе (вилочковой, или зобной, железе) вырабатываются гормоны тимозины и тимопоэтины – стимуляторы иммунных процессов.

Щитовидная железа продуцирует йодсодержащие гормоны: тироксин и трийодтиронин, а также тиреокальцитонин. Тироксин и трийодтиронин регулируют основной обмен, то есть тот уровень энергозатрат, который необходим для поддержания жизнедеятельности организма в состоянии полного покоя. Тиреокальцито-нин регулирует обмен кальция и фосфора.

В околощитовидных железах вырабатывается паратгормон, который также регулирует кальциевый и фосфорный обмен. Но если тиреокальцитонин щитовидной железы понижает содержание кальция в крови, то паратгормон околощитовидных желез повышает его. Антагонистические взаимоотношения между тиреокальцитонином и паратгормоном обеспечивают содержание кальция в крови на нужном для организма уровне.

Исключительно важна роль гормонов надпочечников. Это парные органы, расположенные над верхними полюсами почек. В надпочечниках различают корковое и мозговое вещество.

Корковое вещество выделяет группу стероидных гормонов, именуемую собирательным названием кортикостероиды. Три зоны коркового вещества специализированы на выделении различных гормонов. Клетки клубочковой зоны продуцируют минералокортикоиды: дезоксикортикостерон и альдостерон, регулирующие минеральный обмен. Пучковая зона вырабатывает глюкокортикоиды: кортизол и кортикостерон, осуществляющие регуляцию обмена белков, жиров и углеводов. В сетчатой зоне синтезируются некоторые предшественники мужских половых гормонов (андрогенов).

Мозговое вещество надпочечников выделяет в кровь катехоламины – адреналин и норадреналин. Норадреналин выступает в роли не только гормона, но и медиатора нервных процессов симпатического отдела нервной системы. Катехоламины обладают выраженным сосудосуживающим действием, повышая тем самым артериальное давление. Они участвуют в регуляции углеводного и жирового обмена, играют основную роль в адаптации организма во время стресса. Адреналин выделяется в ответ на самые разнообразные раздражители: страх, волнение, боль, радость. Его образно называют аварийным гормоном, гормоном эмоций, первым медиатором стресса.

В эндокринной части поджелудочной железы (островках Лангерганса) вырабатываются инсулин, глюкагон, соматостатин. Инсулин является важнейшим регулятором углеводного, а также жирового и белкового обмена. Глюкагон – это физиологический антагонист инсулина, а также стимулятор его секреции в присутствии глюкозы. Соматостатин подавляет секрецию инсулина, глюкагона и гормона роста. Нарушение секреции инсулина и глюкагона ведет к развитию такого тяжелого и распространенного заболевания, как сахарный диабет.

Половые железы продуцируют не только гормоны, но также и половые клетки (сперматозоиды и яйцеклетки). В семенниках (яичках) вырабатываются мужские половые гормоны – андрогены, главным из которых является тестостерон. Андрогены способствуют развитию первичных и вторичных мужских половых признаков. В яичниках синтезируются женские половые гормоны – эстрогены, отвечающие за формирование женских первичных и вторичных половых признаков, а также прогестерон – гормон, необходимый для нормального течения беременности. Выработка гормонов и половых клеток осуществляется под контролем гонадотропных гормонов аденогипофиза.

Почки, выполняя выделительную функцию, являются также и своеобразной эндокринной железой. Клетки так называемого юкстагломерулярного аппарата почек секретируют в кровь гормон ренин, участвующий в образовании ангиотензина II – активнейшего регулятора тонуса сосудов. В почках вырабатывается также эритропоэтин – гормон, стимулирующий образование эритроцитов в костном мозге.

Установлено, что и сердце является эндокринной железой. В предсердии синтезируется натрийуретический гормон, влияющий на выделение натрия почками.

Временно функционирующим эндокринным органом является плацента («детское место»). В ней вырабатываются гормоны, способствующие нормаль ному протеканию беременности.

В центральной нервной системе образуются особые вещества – нейроэн докринные пептиды (нейрогормоны) – эндорфины, энкефалины. Их называют «эндогенными опиатами» или морфиноподобными пептидами. Эти гормоны оказывают аналгезирующее (обезболивающее) действие и воспроизводят поведенческие эффекты морфина.

Единство и взаимосвязь нервных и эндокринных механизмов очень отчетливо прослеживаются на примере функционирования гипоталамо-гипофизарной системы. В настоящее время правильнее говорить не об эндокринной, а о нейроэндокринной системе организма.

Изложив общие представления о железах внутренней секреции, перейдем к главной цели нашего повествования – щитовидной железе.

В статье «Секрецию гормонов осуществляют железы» использованы материалы:

http://helpiks.org/6-18031.html

http://www.grandars.ru/college/medicina/zhelezy-vnutrenney-sekrecii.html

http://aupam.ru/pages/profilaktika/zabol_thzhlp/page_02.htm

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *