Рецепторы стероидных гормонов — Рецепторы стероидных гормонов

Автор: | 20.05.2021

Рецепторы стероидных гормонов

Рецепторы стероидных гормонов

В отличие от пептидных, стероидные гормоны легко проникают через плазматическую мембрану клеток и взаимодействуют со своими рецепторами в цитоплазме и/или ядре клетки-мишени. Некоторые рецепторы стероидных гормонов — онкопротеины (например, erbA). Все рецепторы стероидных гормонов имеют ДНК-связывающий участок. Другими словами, рецепторы стероидных гормонов — факторы транскрипции. Конечный эффект взаимодействия стероидного гормона и его рецептора состоит в изменении спектра транскрибируемых генов. Таким образом, результат действия стероидных гормонов на клетку-мишень — индукция синтеза конкретных белков, что фундаментально изменяет метаболизм как клетки-мишени, так и множества других клеток организма. Синтезируемые под влиянием стероидных гормонов белки могут и сами быть гормонами или другими важными для функционирования клетки молекулами, например ферментами.

После высвобождения из эндокринной клетки стероидные гормоны попадают в кровь, где около 95% гормонов связывается со специфическими транспортными белками (транскортинами, связывающими тестостерон белками, различными альбуминами и глобулинами).

Рецепторы стероидных гормонов причисляют к обширной группе ядерных рецепторов, куда также относят рецепторы ретиноидов, витамина D3, трийодтиронина. После поступления в клетки-мишени молекулы стероидного гормона могут вызвать ответ только в том случае, если в клетке есть специфические внутриклеточные рецепторы для этого гормона. Так, эстрогеновые рецепторы обнаруживают в клетках-мишенях матки, молочной железы и мозга. Клетки волосяных фолликулов кожи лица и эректильная ткань полового члена содержат андрогеновые рецепторы. Глюкокортикоидные рецепторы обнаруживают практически во всех клетках.

стероидные гормоны

В клетке-мишени каждый из основных классов половых стероидных гормонов (андрогены, эстрогены, прогестины) индуцирует развитие цепи событий, которая включает (I) связывание стероида с его рецептором; (И) аллостерические конформационные изменения структуры рецептора, переводящие рецептор из неактивной формы в активную; (III) связывание стероид-рецепторного комплекса с регуляторными элементами ДНК; (IV) транскрипцию и синтез новых молекул м-РНК; (V) трансляцию м-РНК и синтез новых белков.

При транскрипции РНК-полимераза II присоединяется к промотору — специфическому сайту молекулы ДНК, с которого начинается синтез полимера. РНК-полимераза II раскручивает участок двойной спирали ДНК, обнажая матрицу для комплементарного спаривания оснований. Когда РНК-полимераза встречает сигнал терминации транскрипции, синтез полимера прекращается.
Большинство фармакологических и физиологических знаний о механизме действия стероидных гормонов было получено на основании исследований стероидных рецепторов.

Эффективность действия стероидных гормонов зависит от аффинности рецептора для гормона или его фармакологического аналога, а также от эффективности аллостерически активированного комплекса гормон—рецептор в регуляции транскрипции.

Стероидные гормоны и их биологическое значение

Автор: Пользователь скрыл имя, 27 Декабря 2010 в 12:36, реферат

Описание работы

К стероидам относятся биологически активные соединения, главным образом, животного происхождения, являющиеся производными полициклического углеводорода гонана (старое название — стеран, систематическое название — циклопентанпергидрофенантрен).

Работа содержит 1 файл

Стероидные гормоны и их биологическое значение..doc

Очищенный холестерол — белое, кристаллическое, оптически активное вещество, нерастворимо в воде, хорошо растворяющееся в хлороформе, ледяной уксусной кислоте. В организме встречается как в свободном виде, так и в виде сложных эфиров с высшими жирными кислотами (этерифицированный холестерол). В организм поступает с животными жирами, а также синтезируется из уксусной кислоты (ацетилСоА).

Нарушение обмена холестерола, приводящее к повышению его уровня в крови и тканях, является фактором риска развития атеросклероза и других сердечно-сосудистых заболеваний. Кроме того, он может быть причиной образования желчных камней. Холестерол является предшественником желчных кислот и стероидных гормонов.

Разновидности стероидов

Три наиболее важные группы стероидов составляют cтерины, желчные кислоты и cтероидные гормоны. Кроме того, к стероидам относят соединения растительного происхождения, обладающие ценными фармакологическими свойствами: стероидные алкалоиды, гликозиды дигиталиса (сердечные гликозиды) и стероидные сапонины.

Стеринами называются cтероидные спирты. Все стерины содержат в-гидроксильную группу при С-3 и одну или несколько двойных связей в кольце В и боковой цепи. В молекулах стеринов отсутствуют карбоксильные и карбонильные группы.

В организме животных наиболее важным стерином является холестерин. В растениях и микроорганизмах содержится множество родственных соединений, например эргостерин, в-ситостерин, стигмастерин.

Холестерин присутствует во всех животных тканях, особенно в нервных тканях. Он является важнейшей составной частью клеточных мембран, где регулирует их текучесть. Запасной и транспортной формами холестерина служат его эфиры с жирными кислотами. Наряду с другими липидами холестерин и его эфиры присутствуют в составе липопротеидных комплексов плазмы крови. Холестерин входит в состав желчи и многих желчных камней. Нарушение обмена холестерина играет важную роль в развитии атеросклероза, заболевания связанного с отложением холестерина (бляшек) на стенках кровеносных сосудов (кальцинирование) из-за повышенного уровня холестерина в крови. Для предупреждения атеросклероза важно, чтобы в пищевом рационе прeoблaдaли продукты растительного происхождения, для которых характерно низкое содержание холестерина. Напротив, пищевые продукты животного происхождения содержат много холестерина, особенно яичный желток, мясо, печень, мозги.

Б. Желчные кислоты

Из холестерина в печени образуются желчные кислоты. По химическому строению эти соединения близки к холестерину. Для желчных кислот характерно наличие укороченной разветвленной боковой цепи с карбоксильной группой на конце. Двойная связь в кольце В отсутствует, а кольца А и В сочленены в цис-положении. Стероидный кор содержит в положениях 3, 7 и 12 от одной до трех в-гидроксильных групп.

Желчные кислоты обеспечивают растворимость холестерина в желчи и способствуют перевариванию липидов. В печени вначале образуются первичные желчные кислоты — холевая и хенодезоксихолевая (антроподезоксихолевая). Дегидроксилирование этих соединений по С-7 микрофлорой кишечника приводит к образованию вторичных желчных кислот — литохолевой и дезоксихолевой.

В. Стероидные гормоны

Биосинтез стероидных гормонов — процесс не столь заметный в количественном отношении — имеет вместе с тем большое физиологическое значение. Стероиды образуют группу липофильных сигнальных веществ, регулирующих обмен веществ, рост и репродуктивные функции организма.

В организме человека присутствуют шесть стероидных гормонов: прогестерон, кортизол, альдостерон, тестостерон, эстрадиол и кальцитриол (устаревшее название кальциферол). За исключением кальцитриола эти соединения имеют очень короткую боковую цепь из двух углеродных атомов или не имеют ее вовсе. Для большинства соединений этой группы характерно наличие оксогруппы при С-3 и сопряженной двойной связи С-4/С-5 в кольце А. Различия наблюдаются в строении колец С и D. В эстрадиоле кольцо А ароматическое и, следовательно, гидроксильная группа oблaдаeт свойствами фенольной ОН-группы. Кальцитриол отличается от гормонов позвоночных, однако также построен на основе холестерина. За счет светозависимой реакции раскрытия кольца В кальцитриол образует так называемый «секостероид» (стероид с раскрытым кольцом).

Экдизон — стероидный гормон насекомых — представляет собой более раннюю в эволюционном отношении форму стероидов. Стероидные гормоны, выполняющие сигнальную функцию, встречаются также в растениях.

Метаболизм стероидных гормонов

Биосинтез стероидных гормонов

Общим предшественником стероидных гормонов является холестерин. Углеродный скелет холестерина включает 27 атомов углерода и состоит из 4 конденсированных колец. Четвертое кольцо имеет длинную боковую цепь. Существует общепринятая система наименования циклов и нумерации углеродных атомов в молекулах стероидов.

Холестерин, необходимый для синтеза стероидных гормонов, поступает из разных источников в гормонсинтезирующие клетки желез а составе липопротеинов низкой плотности (ЛНП) или синтезируется в клетках из ацетил-СоА. Избыток холестерина откладывается в липидных каплях в виде эфиров жирных кислот. Запасной холестерин вновь быстро мобилизуется за счет гидролиза.

Ферментативные реакции. Отдельные стадии биосинтеза стероидных гормонов катализируются высокоспецифичными ферментами. Ферментативные реакции подразделяются на следующие подтипы:

гидроксилирование: a, f, g, h, i, k, I, p

дегидрирование: b, d, m

изомеризация: с

гидрирование: о

расщепление: а, е, n

ароматизация: q

На схеме 1 приведен биосинтез трех стероидов: холестерина (1), прогестерона (2) и эндростендиона (3; промежуточного продукта биосинтеза тестостерона), в котором принимают участие ферменты указанных типов ферментативных реакций.

Путь биосинтеза. Биосинтез каждого гормона состоит из множества последовательных ферментативных реакций. В качестве примера рассмотрим биосинтез прогестерона (А). Биосинтез начинается с расщепления боковой цепи холестерина между С-20 и С-22 (а). Стероидное соединение с укороченной боковой цепью носит название прегненолон. Последующие стадии, окисление гидроксигруппы при С-3 (b) и сдвиг двойной связи от С-5 к С-4 (с) приводят к образованию прогестерона.

Приведенные на схеме стероиды объединены в подгруппы по числу углеродных атомов. Холестерин и кальцитриол являются С27-стероидами. Соеди нения с укороченной на 6 атомов углерода боковой цепью, прогестерон, кортизол и альдостерон, составляют группуС21-стероидов. В ходе биосинтеза тестостерон полностью утрачивает боковую цепь и поэтому его относят к С19-стероидам. При биосинтезе эстрадиола на стадии образования ароматического цикла теряется ангулярная метильная группа и, следовательно, эстрадиол является С18-стероидом.

В процессе биосинтеза кальцитриол подвергается фотохимической реакции раскрытия кольца В. Поэтому его относят к «секостероидам». Однако по своим биохимическим свойствам он является типичным стероидным гормоном.

Инактивация стероидных гормонов

Процесс ферментативной инактивации стероидных гормонов происходит в печени. Молекулы стероидных гормонов подвергаются восстановлению или гидроксилированию, а затем переводятся в конъюгаты (см. с. 308). Восстановление идет по оксогруппе и двойной связи кольца А. Биосинтез конъюгатов заключает ся в образовании сернокислых эфиров или гликозилировании глюкуроновой кислотой и приводит к водорастворимым соединениям.

При инактивации стероидных гормонов образуются разнообразные производные с существенно более низкой гормональной активностью. Следует отметить, что организм млекопитающих лишен способности разрушать углеродный скелет молекул стероидов.

Наконец, стероиды выводятся из организма с мочой и частично с желчью. Содержание стероидов в моче используется в качестве критерия при изучении метаболизма стероидов.

Механизм действия липофильных гормонов

Схема 2. Механизм действия липофильных гормонов

К липофильным сигнальным веществам принадлежат все стероидные гормоны, тироксин и ретиноевая кислота. Местом действия этих биорегуляторов являются ядра клеток-мишеней.

В крови липофильные гормоны обычно бывают связаны с транспортными белками крови. Однако через плазматическую мембрану проникает лишь свободный гормон. В цитоплазме или в клеточном ядре гормон взаимодействует со специфическим рецептором.

Рецепторы гормонов принадлежат к группе редких белков. Они присутствуют в клетках-мишенях в количестве 10 3 — 10 4 молекул на клетку и вместе с тем характеризуются высоким уровнем сродства к гормону (Кd = 10 -8 — 10 -10 М) и высокой избирательностью. Связывание гормона влечет за собой конформационную перестройку молекулы рецепторного белка, сопряженного с другими белками, диссоциацию с освобождением от белков-ингибиторов, в частности от белка теплового шока (hsp90), и образование димеров, обладающих повышенным сродством к ДНК (DNA).

Ключевой стадией процесса гормональной регуляции является связывание димеров гормон-рецепторного комплекса с двунитевой ДНК. Комплекс связывается с регуляторными участками генов, которые носят название гормон-респонсивные элементы [ГРЭ (HRE)]. Это короткие симметричные фрагменты ДНК (палиндромы, которые выполняют функции усилителей (энхансеров, англ. enhancer) транскрипции. На схеме 2 приведен ГРЭ для глюкокортикоидов (n — любой нуклеотид). ГРЭ для других гормонов имеют несколько иную нуклеотидную последовательность, что существенно важно для сохранения специфичности гормонального действия. Каждый гормон-рецепторный комплекс узнает собственный участок связывания и инициирует транскрипцию лишь одного контролируемого этим участком гена. Связывание димеров рецептора с ГРЭ ведет к стимуляции, реже — к ингибированию, транскрипции соседних генов. Так, действие гормона в течении нескольких часов приводит к изменению уровня специфических мРНК ключевых белков клетки.

Рецепторы липофильных гормонов

Рецепторы липофильных сигнальных веществ во многом сходны, так как принадлежат к одному семейству белков. Молекула рецепторного белка включает несколько доменов. имеющих различные размеры и выполняющих разные функции. В молекуле имеется регуляторный и ДНК- связывающий домены, а также небольшой сайт-специфичный и г ормонсвязывающий домены.Наибольшая степень гомологии между рецепторами наблюдается в области ДНК-связывающего домена. В этом домене содержатся повторяющиеся фрагменты, богатые остатками цистеина. Цистеин может координационно связывать ионы цинка и, следовательно, образовывать цинковые кластеры.

Наряду с рецепторами стероидных гормонов, тироксина (и других тиреоидных гормонов) и ретиноевой кислоты семействоцинксодержащих белков включает вирусный и клеточный онкоген erb-A, рецептор экологически опасного токсина диоксина и множество других белков, лиганды которых пока не идентифицированы.

С помощью химического синтеза получают вещества, не идентичные гормонам, но обладающие свойством связываться с рецепторами. Синтетические лиганды, вызывающие тот же эффект, что и природные гормоны, называются агонистами гормонов. Например, синтетическим путем получены оральные контрацептивы, агонисты эстрогенов и прогестерона. Лиганды, которые связываются с рецептором, но не вызывают биологического эффекта, носят название антагонистов, т.е. антагонисты блокируют действие эндогенных гормонов. Антагонисты гормонов находят применение в терапии опухолей. Для того чтобы оценить, является ли данная опухоль гормонозависимой и будет ли она чувствительна к действию антагонистов, необходимо на пробе ткани определить уровень экспрессии гормональных рецепторов.

Рецепторы стероидных гормонов: механизм действия

До недавнего времени считалось, что рецепторы стероидных гормонов исходно (т.е. в отсутствие гормона) локализованы в цитозоле, и в 1972 году Дженсеном с соавторами была предложена двухступенчатая модель взаимодействия стероидных гормонов с клеткой-мишенью . Согласно этой модели, липофильные молекулы стероидов свободно проникают из крови в клетку-мишень и быстро связываются в цитоплазме с рецепторными белками. После связывания рецептора с гормоном резко повышается его сродство к ядерному хроматину. Повышение сродства рецептора к хроматину коррелирует с его физической трансформацией, при которой от него отделяется бтш 90 , и рецептор выявляется в форме 4S. Предполагают, что отделение бтш 90 является следствием изменения конформации гормон-связывающего участка под влиянием связывания с гормоном. Активированный гормон-рецепторный комплекс перемещается ( транслоцируется ) из цитоплазмы в ядро и аккумулируется в хроматине. В хроматине он взаимодействует с определенными акцепторными участками хроматина и модулирует процесс транскрипции. Затем под действием специальных выключающих (терминирующих) механизмов гормон- рецепторный комплекс распадается.

Взаимодействие стероидных рецепторов с ДНК осуществляется через ДНК- связывающие участки рецептора . С другой стороны, в составе ДНК имеются специфические гормон-чувствительные элементы, примыкающие, как правило, с 5 — конца к гормон-зависимым генам. Эти элементы усиливают транскрипцию, работая на расстоянии 10#-10# пар оснований вниз и вверх от промоторных участков соответствующих генов.

Для рецептора прогестерона и рецептора эстрадиола показано, что с палиндромным гормон-чувствительным участком связываются две рецепторные молекулы, образуя функциональный димер. При этом рецептор прогестерона способен образовывать как гомодимеры (АА или ВВ), так и гетеродимеры (АВ).

Взаимодействие стероид-рецепторных комплексов с хроматином может приводить к изменению структуры хроматина и тем самым регулировать доступ к определенным участкам ДНК белков, участвующих в регуляции транскрипции ( транскрипционный фактор ). Кроме того, это взаимодействие может влиять на активность самих транскрипционных факторов. Лимитируя или повышая активность рецепторов, они могут играть решающую роль в осуществлении эффектов стероидов.

В 80-х гг стройная гипотеза Дженсена о транслокации гормон-рецепторных комплексов из цитоплазмы в ядро подверглась пересмотру в связи с появлением данных, указывающих на локализацию неоккупированных рецепторов стероидных гормонов не в цитоплазме, а в ядре

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *