Общая схема действия гормонов белковой природы — Химическая природа адреналина

Автор: | 20.05.2021

Содержание

Общая схема действия гормонов белковой природы

Химическая природа адреналина

Гормоны следует классифицировать по трем основным признакам.

1. По химической природе

2. По эффекту (знаку действия) – возбуждающие и тормозящие.

3. По месту действия на органы – мишени или другие железы: 1) эффекторные; 2) тропные.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов.

По химической природе гормоны делятся на следующие группы: белково-пептидные, производные аминокислот и стероидные гормоны. Первая группа — это гормоны гипоталамуса и гипофиза, поджелудочной и паращитовидной желёз и гормон щитовидной железы кальцитонин. Некоторые гормоны, например фолликулостимулирующий и тиреотропный, представляют собой гликопротеиды — пептидные цепочки, „украшенные“ углеводами. Пептидные и белковые гормоны обычно действуют на внутриклеточные процессы через специфические рецепторы, расположенные на поверхностной мембране клеток-мишеней. Гормонов имеющих белковую или полипептидную природу называют тропинами, так как они оказывают направленное стимулирующее действие на процессы роста и обмена веществ организма и на функцию периферических эндокринных желез. Рассмотрим некоторых гормонов белково-пептидной природы.

Тиреотропный гормон (тиреотропин)

представляет собой сложный белок глюкопротеид с молекулярным весом около 10000. Он стимулирует функцию щитовидной железы, активирует ферменты протеазы и тем способствует распаду тиреоглобулина в щитовидной железе. В результате протеолиза освобождаются гормоны щитовидной железы – тироксин и трииодтиронин, которые поступают в кровь и с ней к соответствующим органам и тканям. Тиреотропин способствует накоплению иода в щитовидной железе, при этом в ней увеличивается число клеток и активируется их деятельность.

Тиреотропин выделятся гипофизом непрерывно в небольших количествах. Выделение его регулируется нейросекреторными веществами гипоталамуса.

Фолликулостимулирующий гормон

обеспечивает развитие фолликул в яичниках и сперматогенез в семенниках. Представляет собой белок глюкопротеида с молекулярным весом 67000.

Производные аминокислот

— это амины, которые синтезируются в мозговом слое надпочечников (адреналин и норадреналин) и в эпифизе (мелатонин), а также иодсодержащие гормоны щитовидной железы трииодтиронин и тироксин (тетраиодтиронин), из аминокислоты тирозина, которая, в свою очередь, синтезируется из незаменимой аминокислоты фенилаланина. К ним относятся гормоны мозгового слоя надпочечников норадреналин и адреналин, и гормоны щитовидной железы – трииодтиронин и тироксин.

Биохимическое изучение щитовидной железы началось с открытия содержания в ней значительных количеств иода (Бауман, 1896). Освальдом (1901) был обнаружен иодсодержащий белок тиреоглобулин. В 1919г. Кендалл при гидролизе тиреоглобулина выделил криссталическое вещество, содержащее около 60% иода. Эту аминокислоту он назвал тироксином

(тетраиодтиронин). Образующийся в щитовидной железе тиреоглобулин не поступает в кровь как таковой. Он подвергается сначала ферментативному расщеплению, получившиеся при этом иодсодержащие тироксины и являются продуктами, выделяемыми в кровь. В тканях организма тироксины претерпевают химические превращения, образующиеся при этом продукты, очевидно, и оказывают свое действие на ферментативные системы, локализующиеся в митохондриях. Было найдено, что тироксин распределяется в клетках следующим образом: в клеточном ядре – 47 мг/%, в митохондриях – 34 мг/%, микросомах – 43мг/% и цитоплазме – 163 мг/%.

Гормоны щитовидной железы являются производными тиронина. В 1927г. Харрингтон и Барджер установили структуру тироксина, который можно считать как производное L – тиронина. Тиронин в организме образуется из аминокислоты L — тирозина. 199

Кроме тироксина, в щитовидной железе и плазме крови имеется другое, родственное ему соединение – трииодтиронин.

Корковый и мозговой слой надпочечников млекопитающих секретируют гормоны, различные как по химической природе, так и по физиологическому действию.

Гормоном мозгового слоя является адреналин.

Адреналин – это продукт окисления и декарбоксилирования аминокислоты тирозина. Кроме адреналина, мозговой слой надпочечников вырабатывает также норадреналин,отличающийся от адреналина отсутствием в его молекуле метильной группы:

Адреналин и норадреналин вырабатываются различными клетками мозгового слоя. Биосинтез адреналина начинается с окисления фенилаланина, который превращается в тирозин; тирозин под влиянием фермента ДОФА — оксидазы превращается в 3,4-дегидрооксифенилаланин (ДОФА). Последний декарбоксилируется, и образуется амин, и из него норадреналин. Адреналин возникает уже как продукт метилирования норадреналина.

Страницы: 12

Другое по теме:

Расположение надпочечников – парных желез внутренней секреции. Особенности строения железы, ее физиологическая деятельность. Химическая природа адреналина. Воздействие гормона на организм, его синтез и применение в медицинской и спортивной практике.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

Анатомо-физиологические особенности эндокринной системы детей: щитовидной железы, паращитовидной железы и надпочечников

Основные гормоны щитовидной железы. Влияние тироксина и трийодтиронина на детский организм. Методы исследования паращитовидных желез, признаки их клинической недостаточности. Особенности дифференцировки надпочечников у детей.

реферат Гормоны надпочечников

Клиническая болезнь Кушинга.

контрольная работа [29,3K], добавлен 21.10.2013

Гормоны поджелудочной железы. Физиологическое значение инсулина, регуляция секреции. Гормоны коркового слоя надпочечников. Регуляция образования глюкокортикоидов и минералкортикоидов. Роль надпочечников адаптационного синдрома. Половые железы (гонады).

лекция [114,9 K], добавлен 25.09.2013

Железы внутренней секреции и их гормоны. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез. Взаимодействие гипоталамуса и гипофиза. Основные гормоны коры надпочечников, их метаболизм.

презентация [4,5 M], добавлен 06.12.2016

Физиология эндокринной системы

Гипоталамо-гипофизарная система. Функции гипофиза. Основные гормоны и их эффекты. Функции надпочечников. Железы внутренней секреции. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез.

презентация [4,4 M], добавлен 13.12.2013

Классификация гормонов в зависимости от места их природного синтеза. Гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы, их роль в происхождении многих заболеваний нервной системы, кожи.

презентация [345,9 K], добавлен 14.04.2015

Гормоны коры надпочечников

Морфо-функциональные особенности коры надпочечников, главные продукты стероидогенеза, основные гормоны. Факторы, регулирующие секрецию ренина и альдостерона. Патологии коркового вещества надпочечников. Изменение метаболизма при гипо- и гиперсекреции.

реферат [1,1 M], добавлен 27.12.2011

Выработка адреналина в мозговом слое надпочечников. Классификация опухолей, предложенная О.В. Николаевым. Диагностика синдрома Конна. Кортикоэстрома или синдром Кушинга. Андростерома у мужского пола. Гормональнонеактивные опухоли коры надпочечников.

презентация [187,9 K], добавлен 14.11.2016

Препараты гормонов надпочечников, половых гормонов, анаболических стероидов. Антигормональные препараты

Гормоны коры надпочечников. Схема зон надпочечника и вырабатываемые ими гормоны. Мозговое вещество надпочечников. Побочные эффекты глюкокортикоидной терапии. Расстройства, связанные с надпочечниками. Антигормональные препараты, показания к применению.

лекция [5,7 M], добавлен 28.04.2012

Роль желез внутренней секреции в регуляции минерального обмена в тканях зуба и влияние их гормонов на состояние зубочелюстной системы

Рассмотрение общего влияния поджелудочной железы на физиологическую активность органов и систем организма человека. Изучение влияния гипофиза, поджелудочной и околощитовидных желез, надпочечников; их роль в регуляции минерального обмена в тканях зуба.

презентация [241,4 K], добавлен 04.11.2014

Действие и синтез гормонов

Гормоны как продукты внутренней секреции. Стероидные гормоны, эффективность кальмодулина, гормон роста (соматотропин): его строение и синтез, воздействие на ряд систем организма. Особенности тиреоидных гормонов. Система ренин-ангиотензин-альдостерон.

реферат [318,8 K], добавлен 07.06.2010

Похожие главы из других работ:

Биологически активные вещества

3. Классификация гормонов по химической природе

По химической природе гормоны делятся на белковые, стероидные (или липидные) и производные аминокислот. Белковые гормоны подразделяют на пептидные: АКТГ, соматотропный (СТГ), меланоцитостимулирующий (МСГ), пролактин, паратгормон, кальцитонин…

Генетически модифицированные организмы. Принципы получения, применение

2.2.2 Химическая промышленность

Общеизвестно, что микроорганизмы синтезируют целый ряд ценных веществ. Сегодня, благодаря направленным генетическим манипуляциям, удается не только увеличить продуктивность биосинтеза, но и получать вещества…

Гидрофильные гормоны, их строение и биологические функции

Номенклатура и классификация гормонов

Химическая природа почти всех известных гормонов выяснена в деталях (включая первичную структуру белковых и пептидных гормонов), однако до настоящего времени не разработаны общие принципы их номенклатуры…

1. Химическая структура и синтез окситоцина

Окситоцин не является собственным гормоном нейрогипофиза, а лишь накапливается в нем, перемещаясь по аксонам гипоталамо- гипофизарного пучка из ядер переднего гипоталамуса — супраоптического и паравентрикулярного…

2. Механизм действия гормонов. Роль циклазной системы в механизме действия гормонов

По механизму действия гормоны делят на два основные типа. Первый — это белковые и пептидные гормоны, катехоламины и гормоноиды. Их молекула, подойдя к клетке- мишени…

Закон сохранения массы до Эйнштейна и после

Природа массы

Вернемся в заключение к фундаментальной физике. Свойство массы превращаться в энергию (и наоборот) не было известно в ньютоновской классической физике.

Химическая природа гормонов

Этот грандиозный резервуар энергии открыла в природе теория относительности…

Кодирование и реализация биологической информации в клетке, генетический код и его свойства

2. Химическая организация гена

Исследования, направленные на выяснение химической природынаследственного материала, неопровержимо доказали, что материальнымсубстратом наследственности и изменчивости являются нуклеиновые кислоты,которые были обнаружены Ф…

Научные теории естествознания

7. Функции ДНК и ее химическая характеристика

Живые организмы состоят из органических веществ. Характеристики организмов кодируются набором генов, в которых записана вся наследственная информация…

Отличие живой природы от неживой

Живая природа

Живая природа — совокупность организмов. Делится на пять царств: бактерии, грибы, растения и животные. Живая природа организуется в экосистемы, которые составляют биосферу. Основной атрибут живой материи — генетическая информация…

Отличие живой природы от неживой

Неживая природа

Неживая природа, или косная материя, представлена в виде вещества и поля, которые обладают энергией. Она организована в несколько уровней: элементарные частицы, атомы, химические элементы, небесные тела, звёзды, галактика и Вселенная…

Прикладные аспекты биоэнергетики

1.Природа биоэнергетики

Природа биоэнергетического поля уже достаточно хорошо изучена в научных кругах. Но существует определенная масса людей, которые считают это шарлатанством…

Способы выделения ингибиторов из растения

ГЛАВА 3. ХИМИЧЕСКАЯ ПРИРОДА АЛЛЕЛАПАТИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ

Все вещества, участвующие в химическом взаимодействии растений, можно разделить на три большие группы. К первой относятся вещества так вторичного происхождения органические кислоты, эфирные масла, алкалоиды, глюкозиды, флавоноиды…

2. Химическая природа, синтез и транспорт фитогормонов

Основные гормоны растений — это органические соединения с молекулярной массой от 28 (этилен) до 346 (гибберелловая кислота). Многие фитогормоны и другие регуляторы роста растений представляют собой слабые кислоты…

Эндокринная система животных и человека

1.2.1 Классификация гормонов позвоночных по их структуре и химической природе.

Гормоны — производные тирозина катехоламины: норадреналин, адреналин тиреоидные гормоны: тироксин, трииодтиронин. Стероидные гормоны: тестостерон, эстрогены, прогестерон, кортикостероиды, витамин D3. Пептидные и белковые гормоны…

Эндокринная система животных и человека

1.2.2 Функциональная классификация гормонов

1. Эффекторные гормоны — гормоны, которые оказывают влияние непосредственно на орган-мишень. Тропные гормоны — гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом…

Слово «гормон» происходит от греческого «hormao» и означает «возбуждать».

Гормон – это вещество, которое выделяется тканью одного типа, как правило, в следовых количествах и доставляется кровью в другую ткань (ткань-мишень). Там гормон вызывает специфическую биохимическую или физиологическую реакции.

Химическая природа и классификация гормонов

Гормоны регулируют обмен веществ и другие функции организма: ритм сердца, давления крови, работу почек, перистальтику кишечника, выделение пищеварительных ферментов.

Базальный уровень гормонов в крови очень низок. Расположен в пределах микромолярных ( ) до пикомолярных ( ). Как правило, один гормон продуцируют клетки одного типа. Клетки, продуцирующие гормон, образуют специализированный орган – эндокринную железу.

Важная особенность гормонов – дистальность действия. Они поступают в кровь и переносятся ею к органам и тканям, где реализуется биологический эффект.

Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу в комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС (рис. 1) Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов — либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями.

Рис. 1. Схема взаимосвязи регуляторных систем организма. 1 — синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 — сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормо-нов; 3 — рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тройных гормонов.гипофиза; 4 — тройные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 — гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 — изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 — синтез и секреция тройных гормонов подавляется гормонами эндокринных желез; ⊕ — стимуляция синтеза и секреции гормонов; ⊝ — подавление синтеза и секреции гормонов (отрицательная обратная связь).

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз.

Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови.

В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения — цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков.

Классификация гормонов по химическому строению

Выделяют три класса гормонов:

2. Производные аминокислот

Пептидные гормоны могут содержать от 3 до 200 аминокислотных остатков. К ним относятся все гормоны гипоталамуса, гипофиза, паращитовидной железы, а также инсулин и глюкагон, секретируемые поджелудочной железой, и кальцитонин щитовидной железы.

Гормоны принадлежащие к аминам, представляют собой низкомолекулярные водорастворимые соединения, содержащие в своем составе аминогруппы. К их числу относятся адреналин, секретируемый мозговой тканью надпочечника, и тиреоидные гормоны (тироксин, трииодтиронин).

К стероидным гормонам ( которые хорошо растворимы в жирах) относятся гормоны коры надпочечников, андрогены (мужские половые гормоны) и эстрогены (женские половые гормоны). В основе структуры молекул лежит циклопентанпергидрофенантрен.

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 1). Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена жиров и углеводов и, кроме этого, регулирует частоту сердечных сокращений, АД, сокращение гладких мышц. Кортизол не только стимулирует глюконеогенез, но и вызывает задержку NaCl.

Таблица 1. Классификация гормонов по химическому строению.

Гормоны белковой природы

Автор работы: Пользователь скрыл имя, 13 Мая 2013 в 18:33, реферат

Описание работы

Гормоны (от греч. hormao – приводить в движение, возбуждать) – биологически активные вещества разной химической природы, которые образуются специализированными клетками желез внутренней секреции, выделяются непосредственно в кровь, лимфу или ликвор и регулируют обмен веществ и физиологические функции организма. В настоящее время известно около 60 биологически активных секретов, которые продуцируются эндокринными железами и имеют гормональную активность.

Содержание работы

1. Вступление
2. Классификация гормонов
3. Гормоны гипоталамуса
4. Гормоны гипофиза
5. Гормоны поджелудочной железы
6. Гормоны желудочно-кишечного тракта
7. Гормоны паращитовидной железы
8. Список литературы

Файлы: 1 файл

рефератГормоны белковой природы .docx

Образование и выделение гормонов в железистой клетке гипофиза происходит следующим образом. Из капилляров путем микропиноцитоза в клетку проникают вещества, необходимые для синтеза секреторных продуктов. В цитоплазме синтезируются протеины, поступающие в эндоплазматическую сеть, от которой отделяются пузырьки, поступающие в комплекс Гольджи, где происходит конечный синтез секреторного продукта. Созревшие секреторные гранулы поступают в межклеточное пространство.

Тропные гормоны аденогипофиза

Четыре гормона из семи оказывают регулирующее влияние на периферические эндокринные железы – корковое вещество надпочечников, щитовидную железу и гонады.
АКТГ (адренокортикотропный гормон) необходим для развития и функции коры надпочечника (в основном двух ее слоев – пучковой и сетчатой зон). АКТГ стимулирует выработку и секрециюглюкокортикоидов. Для роста и функции третьего слоя коры надпочечника – клубочковой зоны – не требуется АКТГ. В этой зоне вырабатываются минералокортикоиды и эти процессы регулируются другим путем. В отсутствии АКТГ кора надпочечников подвергается атрофии.
АКТГ представляет собой полипептид небольших размеров, состоящий только из 39 аминокислотных остатков. Концентрация АКТГ в крови в обычных условиях невысока (0-5 нг/мл), причем наблюдается четкая циркадная ритмика в его секреции. При стрессе уже через несколько минут увеличивается скорость секреции АКТГ и его содержание в крови.
АКТГ непосредственно действует также на неэндокринные органы-мишени. В частности, установлено прямое влияние АКТГ на липолиз в жировой ткани, причем при избыточной выработке АКТГ развивается усиление пигментации кожи, что, очевидно, связано с близостью строения АКТГ и МСГ. Синтез и секреция АКТГ регулируются кортикотропин- рилизинг-гормоном гипоталамуса; гормоны коры надпочечника на основании механизма обратной связи также включаются в регуляцию секреции АКТГ.

ТТГ (тиреотропный гормон) является гликопротеином, состоящим из двух субъединиц: альфа и бета. Бета-субъединица определяет специфическую биологическую активность гормона, альфа-субъединица сходна в ТТГ и гонадотропинах (ВСГ и ЛГ). ТТГ стимулирует рост и развитие щитовидной железы, регулирует выработку и выделение гомонов щитовидной железы – тироксина (Т4) и трииодтиронина (Т3). ТТГ, циркулирующий в плазме, связан с гамма-глобулином. Метаболизируется ТТГ главным образом в почках. Функция тиреотропоцитов регулируется тиреотропин- рилизинг гормоном гипоталамуса. Гормоны щитовидной железы также входят в цепи регуляции ТТГ.
ГТГ (гонадотропные гормоны) у высших позвоночных представлены двумя гормонами с несколько различающейся сферой действия. ФСГ у самок стимулирует развитие фолликулов в яичниках, самцам этот гормон необходим для развития семенных канальцев и дифференциации спермиев. ЛГ участвует в овуляции, образовании желтого тела, стимулирует секрецию половых гормонов стероидогенной тканью яичников и семенников. Однако многие этапы развития, созревания половых клеток, овуляции и спермиации являются результатом синэргического действия ФСГ и ЛГ.
Введение гипофизэктомированным животным гонадотропных гормонов вызывает у них возобновление развития атрофированных гонад и развитие вторичных половых признаков.
Секреция ФСГ и ЛГ регулируется одним гонадотропин-рилизинг- гормоном гипоталамуса, в состав регулирующей системы входят также половые стероиды. Секреция гонадотропин-рилизинг-гормона гипоталамуса подвержена центральному влиянию (преоптической области гипоталамуса и лимбической системы).

Эффекторные гормоны аденогипофиза

Эти гормоны оказывают стимулирующее влияние на неэндокринные органы- и ткани-мишени. К этой группе относятся три гормона: гормон роста, пролактин и меланоцитостимулирющий гормон (МСГ).
Гормон роста – белок. У человека он состоит из 191 аминокислотного остатка. Структура гормона роста близка к структуре пролактина. Гормон роста имеет ряд эффектов, он стимулирует общий рост тканей, кроме того, имеет ряд метаболических эффектов.
Влияние гормона роста на рост основано на стимуляции эндохондрального окостенения – процесса, посредством которого кости растут в длину.
После полового созревания происходит окостенение эпифизарных хрящей и гормон роста перестает влиять на рост костей в длину, он способен усиливать лишь периостальный рост кости и рост некоторых тканей. Когда у взрослых людей происходит чрезмерная выработка гормона роста, у них наблюдается разрастание мягких тканей, деформация и утолщение костей. Это заболевание называется акромегалией. Если гормон роста вырабатывается в избытке в молодом возрасте, когда кости еще способны расти в длину, развивается гигантизм. Напротив, при недостаточности гормона роста у ребенка рост прекращается при достижении 1 м. При такой гипофизарной карликовости пропорции тела нормальные.
Эффект гормона роста, обеспечивающий рост, опосредуется веществом – соматомедином, обнаруживаемым в сыворотке. Это вещество вырабатывается под влиянием гормона роста.
Метаболические эффекты гормона роста многообразны. Весьма важно влияние гормона роста на белковый обмен и прежде всего усиление им синтеза белков. Гормон роста обладает анаболическим действием и оказывает также влияние на обмен жиров и углеводов. Инъекция гормона роста вызывает падение уровня глюкозы и свободных жирных кислот в плазме, через несколько часов после введения отмечается увеличение концентрации глюкозы и свободных жирных кислот в плазме, через несколько часов после введения отмечается увеличение концентрации глюкозы и свободных жирных кислот в плазме. Это происходит потому, что проникновение глюкозы в клетки, в обычных условиях усиливаемое инсулином, нарушается (т.е. толерантность к глюкозе, обеспечиваемая инсулином, снижается под влиянием гормона роста). Повышение концентрации глюкозы происходит в результате увеличения скорости глюконеогенеза, которая, в свою очередь, усиливается под влиянием гормона роста.
В течение суток наблюдаются колебания концентрации гормона роста в 10–20 раз, которые связаны с эндогенным ритмом секреции гормона. Максимум секреции гормона роста отмечается у человека ночью и связан с фазой глубокого сна.
Секреция гормона роста регулируется рилизинг- гормоном и ингибируется гормоном –соматостатином. Уровень гормона роста зависит от соотношения выработки этих двух гипоталамических гормонов, которая регулируется высшими центрами мозга, расположенными в области лимбической системы.
На секрецию гормона роста оказывает влияние содержание энергетических субстратов в клетках и тканях. Снижение концентрации глюкозы в крови стимулирует секрецию гормона роста через гипоталамические рецепторы глюкозы. Секреция гормона роста зависит также от концентрации в крови аминокислот и свободных жирных кислот. Кроме того, секреция гормона роста усиливается стрессорными стимулами различного характера. Возможно, что это влияние опосредуется центральными адренэргическими структурами.

Гормоны поджелудочной железы

Поджелудочная железа состоит из экзокринной и эндокринной частей которые развиваются из одного источника – энтодермы первичной кишки. В экзокринной части, составляющей у человека 98% всей массы железы, вырабатывается пищеварительный сок, который поступает в двенадцатиперстную кишку и содержит ферменты, необходимые для расщепления белков, жиров и углеводов. В островках Лангерганса синтезируются гормоны, регулирующие метаболические процессы, в особенности углеводный обмен.

В островках Лангeрганса большинства позвоночных выявляют два основных типа железистых клеток, вырабатывающих разные гормоны: инсулин и глюкагон. Клетки, синтезирующие инсулин, называют бета-клетками; клетки, вырабатывающие глюкагон, альфа-клетками. Кроме них определен третий тип клеток – дельта-клетки, в которых синтезируется соматостатин

Инсулин представляет собою белковый гормон с молекулярной массой около 6000 дальтон. Он состоит из двух полипептидных цепей, соединенных двумя дисульфидными мостиками. Инсулин образуется из предшественника – проинсулина – под влиянием протеаз. Активность проинсулина невелика (5% активности инсулина). Превращение проинсулина в инсулин происходит в бета-клетках. Инсулин был первым белковым гормоном, синтезированным искусственно.

Глюкагон – полипептид, построенный из одной цепи с молекулярной массой около 3500 дальтон. Кроме альфа-клеток островков Лангерганса глюкагон вырабатывается также в слизистой оболочке кишечника (энтероглюкагон). Функция энтероглюкагона несколько отличается от роли панкреатического глюкагона.
Гормоны островковых клеток оказывают значительное воздействие на метаболические процессы. Инсулин является анаболическим гормоном с широким спектром действия. Его роль состоит в повышении синтеза углеводов, жиров и белков. Он стимулирует метаболизм глюкозы. Под влиянием инсулина увеличивается проницаемость для глюкозы клеток миокарда, скелетных мышц, что усиливает ток глюкозы внутрь клеток и ее обмен. Инсулин стимулирует синтез гликогена в печени, снижает глюконеогенез (образование глюкозы из аминокислот), влияет на обмен жира, усиливая способность жировой ткани и печени к накоплению резервов жиров в форме триглицеридов.
Действие глюкагoна на метаболические процессы осуществляется в печени и реализуется через аденилатциклазу . Основной эффект гормона состоит в усилении гликогенолиза в печени; глюкагон является синэргистом адреналина.
Концентрация гормонов поджелудочной железы в плазме крови зависит от поступления глюкозы с пищей, скорости ее окисления и от уровня других гормонов, участвующих в регуляции содержания глюкозы. При повышении содержания глюкозы в крови усиливается секреция инсулина, при ее снижении выделяется больше глюкагона.

Регуляция секреции глюкагона осуществляется посредством рецепторов глюкозы в переднем гипоталамусе, которые выявляют снижение глюкозы в крови. Возможно, в эту цепь взаимодействий включается гормон роста гипофиза. Соматостатин, вырабатываемый дельта-клетками, оказывает ингибирующее влияние на выделение глюкагона. Симпатическая стимуляция усиливает секрецию глюкагона. Таким образом, система регуляции секреции инсулина и глюкагона и связанного с функцией этих гормонов уровня глюкозы в крови весьма сложна.
При отклонении уровня глюкозы в крови нормы наблюдаются явления гипо- и гипергликемии.
В норме концентрация глюкозы в крови человека относительно постоянна и составляет около 80 мг/100 мл.

Болезни, связанные с гормонами поджелудочной железы

При гипогликемии, т. е. резком снижении уровня глюкозы, наблюдаются тахикардия, голод, возбуждение. В результате гипогликемической комы может наступить смерть. Предотвращение этих явлений возможно при вливаниях глюкозы и введении глюкагона. При уровне глюкозы выше 180 мг/100 мл глюкоза выводится с мочой, что происходит при ослабленной функции инсулина и является одним из проявлений сахарного диабета. Это заболевание возникает в результате недостаточной выработки инсулина бета-клетками поджелудочной железы. Те же явления могут наблюдаться в результате нарушения реакции периферических тканей на инсулин. В отсутствии инсулина глюкоза медленно проникает в клетки мышц и печени, запасы гликогена быстро истощаются.

Гормоны желудочно-кишечного тракта

В желудочно-кишечном тракте выделяется много веществ, принимающих участие в пищеварении. Часть из них переносится кровью к тканям-мишеням и поэтому может рассматриваться как гормоны. Гормоны, вырабатываемые в желудочно-кишечном тракте, представляют собою пептиды; многие из них существуют в нескольких молекулярных формах. Наиболее изученными являются гастрин, секретин, холецистокинин (панкреозимин). В желудочно-кишечном тракте вырабатывается также глюкагон (энтероглюкагон).
Кроме того, в эпителии желудочно-кишечного тракта вырабатываются и другие гормоны, которые пока менее изучены. Основа функцией этих гормонов является влияние на моторику и ceкрецию различных отделов желудочно-кишечного тракта.

Гастрин продуцируется в G-клетках слизистой желудка и 12-перстной кишки, а также островковых клетках поджелудочной железы. В норме основное количество гастрина образуется в желудке. Главная функция гастрина — стимуляция выделения соляной кислоты париетальными клетками дна желудка. Помимо этого, гастрин стимулирует выделение пепсиногена, внутреннего фактора, секретина, а также бикарбонатов и ферментов поджелудочной железой, желчи в печени, активирует моторику желудочно-кишечного тракта.

Основными физиологическими стимулами образования гастрина служат приём белковой пищи и снижение кислотности желудочного сока. Выделение гастрина повышается также под действием нервных стимулов, адреналина, увеличения уровня кальция. Снижение секреции гастрина вызывает повышение кислотности желудочного сока, а также секретин, соматостатин, вазоактивный кишечный полипептид (VIP), гастроингибирующий полипептид (GIP), глюкагон и кальцитонин.

Гипергастринемия может выявляться также при нарушениях секреции кислоты в желудке, когда уровень гормона адекватно повышен, например, при пернициозной анемии, хроническом атрофическом гастрите, раке желудка, а также при стенозе привратника, ваготомии без резекции желудка, у части пациентов с обычной язвенной болезнью. Поскольку уровень гастрина в значительной мере зависит от приёма пищи, исследование должно проводиться строго натощак. Многие лекарственные препараты, направленные на терапию язв, повышают уровень гастрина, в частности, H2-антагонисты, антацидные препараты, блокаторы H+-помпы (омепразол). Оптимальным является исследование уровня гастрина до начала лечения медикаментозными средствами или после его окончания. Уровень гастрина может повышать употребление кофе и курение.

Секретин, гормон, вырабатываемый клетками слизистой оболочки верхнего отдела тонких кишок; участвует в регуляции внешнесекреторной функции поджелудочной железы. Секретин выделяется главным образом под влиянием соляной кислоты желудочного сока; всасываясь в кровь, секретин достигает поджелудочной железы, в которой усиливает секрецию воды и электролитов, преимущественно бикарбоната, но не влияет на выделение железой пищеварительных ферментов. По химической природе — полипептид, состоящий из 27 аминокислотных остатков; молекулярная масса около 3000. По химическому строению сходен с глюкагоном. Осуществлён химический синтез секретина. Открытие и изучение секретина послужило Э. Старлингу основой для введения в 1905 в науку понятия «гормон».

Холецистокинин (панкреoзимин) гормон, вырабатываемый клетками слизистой оболочки преимущественно верхнего отдела тонкой кишки позвоночных. Возбуждает секрецию пищеварительных ферментов поджелудочной железой, стимулирует сокращение жёлчного пузыря. Холецистокинин — полипептид, состоящий из 33 аминокислотных остатков и имеющий сульфированный остаток тирозина; молекулярная масса около 3900. По химической структуре и некоторыми биологическим свойствам холецистокинин сходен с гастрином. Из кожи лягушек выделен декапептид уерулеин, близкий по биологическим свойствам холецистокинин

Осн. ф-ция глюкагона-стимуляция расщепления гликогена в печени , в результате чего происходит повышениеконцентрации глюкозы в крови. Глюкагон стимулирует также липолиз жировой ткани и выработку инсулинаподжелудочно й железой и сокращение сердечной мышцы. По своему действию глюкагон-антагонист инсулина.

Занятие № 2. Гормоны белковой природы.

Цель занятия:Закрепить знания структуры, физиологических и метаболических эффектов гормонов белковой природы и определить химическую природу отдельных гормонов, ознакомиться с методами исследования гормонов, рассмотреть нарушения обмена веществ при сахарном диабете.

Студент должен
знать: уметь:
1. Химическую природу, особенности синтеза, стимулы секреции, транспорт, биологическое действие гормонов белковой природы. 2. Действие гормонов белковой природы (инсулина, глюкогена, тироксина, адреналина) на ключевые регуляторные ферменты циклов энергетического, углеводного и липидного метаболизма. 3. Проявления недостаточной и избыточной продукции некоторых белковых и пептидных гормонов и гормонов – производных аминокислот. 1. Интерпретировать изменения биохимических и физиологических показателей при недостаточном и избыточном образовании некоторых гормонов белковой природы. 2. По изменению биохимических показателей предположить характер нарушения функции экдокринной железы, секретирующей гормон белковой природы.

Содержание занятия.Студентам предстоит отчитаться о выполнении заданий по самоподготовке, дать ответы на тесты контроля исходного уровня знаний и вопросы преподавателя, заслушать и обсудить реферативные сообщения, рассмотреть узловые вопросы темы занятия, решить ситуационные задачи, выполнить самостоятельно реакции на обнаружение гормонов белковой природы.

Методические указания к самоподготовке

Вопросы, рассматриваемые на данном занятии важны для понимания метаболических изменений и лабораторной диагностики заболеваний, связанных с нарушениями функции желез внутренней секреции, и других патологических состояний.

Современные методы определения количества гормонов

До 60-х годов прошлого столетия об активности большинства гормонов, особенно белково-пептидной природы судили путем использования биологических методов – по выраженности того или иного эффекта после введения гормона. В 1960г. R. Yalow (Р. Ялоу) и S. Berson (С. Берсон) впервые предложили радиоиммунологический анализ (РИА) для определения инсулина в крови человека. Открытие данного принципа положило начало бурному развитию разработок методов количественного определения гормонов в анализируемых пробах.

К основным преимуществам радиоиммунологического анализа относятся: высокая чувствительность – способность определять минимальные количества вещества, приблизительно равные 10 -14 – 10 -15 моль/л, специфичность, надежность, точность и др.

В основе РИА лежит принцип использования радиоактивной метки для детекции специфических комплексов (антиген-антитело), образующихся в результате иммунологической реакции с исследуемым веществом. При этом происходит конкурентное взаимодействие двух антигенов: немеченого, представляющего собой определяемый гормон, и меченого аналога этого гормона с включенной радиоактивной меткой. Связывающий агент – соответствующее тело, вступает в равноправное взаимодействие как с искомым гормоном, так и с его меченым аналогом. Связывающий агент обладает ограниченной, строго заданной емкостью, и он не может образовывать комплекс сразу со всем количеством меченного и немеченого гормонов. По закону действующих масс происходит связывание гормонов в количествах, пропорциональных их исходным концентрациям:

аГ * — гормон-антиген с радиометкой

аГ – гормон-антиген искомый, или определяемый

Ат – связующий агент (антитело).

При этом, чем выше содержание искомого (определяемого) гормона в пробе, тем меньшая часть его радиоактивно меченого аналога свяжется с антителом. Следовательно, зная количество связующего агента и меченого гормона, концентрации которых являются величиной заданной, можно рассчитать концентрацию искомого гормона.

В настоящее время разработаны также такие виды радиоиммунологического анализа как иммунорадиометрический, радиорецепторный.

Однако РИА имеет ряд недостатков, в том числе метод требует специального оснащения лабораторий для работы с радиоактивным материалом. Поэтому в начале 1970-х годов было предложено в качестве нерадиоактивного индикатора ферментная метка, когда гормон (антиген) или связующий агент (антитело) химически прочно соединен с ферментом. При этом ферментативная активность впоследствии после соответствующей обработки пропорциональна количеству определяемого гормона. В последние годы для определения гормонов используется иммунологическая реакция, где в качестве субстрата присоединяются люминофоры – вещества, светящиеся в ультрафиолете (метод иммунохемилюминесцентного анализа). Уровень свечения измеряется на специальных приборах люминометрах.

Для успешного усвоения темы выполните следующие задания:

№ п/п Задание Методические указания к выполнению задания
1. Изучите гормоны гипоталамуса и гипофиза. 1. Объясните, почему гипоталамус выполняет роль вегетативного центра нервно-рефлекторной и эндокринной регуляции обмена веществ. 2. Охарактеризуйте структуру и роль гормонов гипоталамуса: релизинг-гормонов, статинов и нейрогормонов (вазопрессина, окситоцита) 3. Почему вазопрессин получил название «антидиуретический гормон»? Каковы причины и проявления несахарного диабета? 4. Разберите структуру и биологическую роль соматотропина, фолликустимулирующего гормона, лютеинизирующего гормона, пролактита, тиротропина, кортикотропина. 5. Охарактеризуйте основы автономной саморегуляции систем – гипоталамо-гипофизарно-гонадной, гипоталамо-гипофизарно-тиреоидной и гипоталамо-гипофизарно-кортикоидной оси.
2. Изучите йодированные гормоны щитовидной железы. 1. Напишите основные этапы биосинтеза йодированных гормонов щитовидной железы. 2. Отметьте особенности транспорта в крови и взаимодействия с рецепторами тироксина и трийодтиронина. 3. Рассмотрите основные физиологические эффекты тиреоидных гормонов, влияние на энергетический обмен, обмен углеводов, липидов и белков. 4. Охарактеризуйте заболевания, связанные с гипер- и гипопродукцией тироксина и трийодтиронина.
3. Изучите пептидные гормоны, регулирующие кальций-фосфорный обмен. 1. Опишите структуру и метаболические функции в костной ткани, почках и тонком кишечнике кальцитонина щитовидной железы. 2. Опишите структуру и влияние на кальций-фосфорный обмен паратгормона.
4. Изучите инсулин поджелудочной железы. 1. Охарактеризуйте особенности структуры и биосинтеза инсулина. Перечислите стимулы, регулирующие инкрецию инсулина. 2. Обратите внимание на рецептор инсулина, обладающего каталитической активностью. 3. Отметьте влияние инсулина на ключевые регуляторные ферменты гликолиза, гликогенеза, апотомического окисления, цикла трикарбоновых кислот, липогенеза, трансляции белка. 4. Выпишите схему молекулярного механизма внутриклеточной передачи гормонального сигнала инсулина.
5. Изучите нарушения обмена веществ при сахарном диабете. 1. Перечислите формы сахарного диабета. Чем они отличаются? 2. Выпишите основные биохимические проявления сахарного диабета: а) б) в) и т.д. 3. Объясните, почему при сахарном диабете нарушается использование глюкозы крови. Укажите ферментативные блоки гликолиза, гликогенеза, пентозофосфатного окисления. 4. Ответьте, почему при сахарном диабете снижается интенсивность цикла трикарбоновых кислот, усиливается глюконеогенез. 5. Напишите реакцию гликозилирования белков при сахарном диабете. 6. Изучите причины, механизмы и последствия усиления при сахарном диабете липолиза и β-окисления жирных кислот. 7. Каковы нарушения использования ацетил-КоА при сахарном диабете? Объясните причину кетонемии и кетонурии при сахарном диабете. 8. Объясните, почему недостаточность инсулина приводит к нарушению биосинтеза нуклеиновых кислот и белка, к усилению протеолиза тканевых белков и катаболизма аминокислот. 9. Дайте определение понятиям «сахарная кривая», почечный «сахарный порог».
6. Изучите структуру и влияние на обмен веществ глюкогона. 1. Опишите структуру и метаболическое влияние глюкогона на обмен углеводов и нейтрального жира. 2. Представьте схему внутриклеточного механизма передачи гормонального сигнала глюкогона на обмен гликогена и нейтрального жира.
7. Изучите гормоны мозгового слоя надпочечников. 1. Напишите химизм реакций биосинтеза норадреналина и адреналина из тирозина. 2. Перечислите физиологические эффекты адреналина и норадреналина: а) 1) б) 2) в) и др. 3) и т.д. 3. Перечислите биохимические эффекты адреналина в печени, мышечной ткани и жировой ткани. 4. Представьте схему аденилатциклазного пути мобилизации гликогена и нейтрального жира при взаимодействии адреналина с β-рецепторами.
8. Изучите пептидные гормоны, регулирующие кальций-фосфорный обмен. 3. Опишите структуру и метаболические функции в костной ткани, почках и тонком кишечнике кальцитонина щитовидной железы. 4. Опишите структуру и влияние на кальций-фосфорный обмен паратгормона.

Подготовьте к занятию протокол лабораторных работ, выписав кратко принцип метода, технику проведения качественных реакций и количественной оценки гормона на практическом занятии, оставляя место для расчетов и резюме.

Примеры тестов контроля исходного уровня знаний

Вид 1. Тест 1.Адреналин и норадреналин: ….

А. Синтезируются в мозговом слое надпочечников;

Б. Проявляют эффекты в клетках-мишенях через взаимодействие с рецепторами;

В. Передают сигналы в клетках-мишенях с помощью аденилатциклазной системы вторичных посредников;

Г. Стимулируют процессы гликогенеза в печени и липогенеза в адипоцитах;

Д. Синтезируются в корковом слое надпочечников;

Е. Изменяют активность ключевых регуляторных ферментов путем фосфорилирования.

Тест 2. После приема углеводистой пищи депонирование энергетического материала стимулирует:……

А. Глюкогон Г. Инсулин

Б. Адреналин Д. Соматотропин

В. Тироксин Е. Промектин

Вид 2. Тест 1. Указанные изменения в тканях-мишенях обеспечивают ….

1. Стимулирует распад гликогена. А. Адреналин

2. Стимулирует глюконеогенез. Б. Инсулин

3. Усиливает катаболизм триглицеридов. В. Тироксин

4. Увеличивает скорость поступления Г. Глюкогон

глюкозы в мышцы и жировую ткань. Д. Норадреналин

5. Стимулирует липогенез в жировой ткани.

Тест 2. Для сахарного и несахарного диабета характерны следующие симптомы…

1. Гипергликемия А. Характерно для сахарного диабета

2. Полиурия Б. Характерно для несахарного диабета

3. Кетонемия В. Характерно для обоих заболеваний

4. Ацидоз Г. Не характерно ни для одного из них

Вид 3. Тест 1. Представьте последовательность событий, происходящих при передаче гормонального сигнала в клетки жировой ткани при действии глюкогона, используя цифровые обозначения.

1. Взаимодействие гормона со специфическим рецептором

2. Активация протеинкиназы

3. Активация G-белка

4. Образование цАМФ

5. Активация аденилатциклазы

6. Гидролиз триацилглицеринов

7. Фосфорилирование ТАГ-липазы.

Тест 2. Используя цифровые значения, расставьте события, происходящме при синтезе и секреции тиреоидных гормонов в соответствующем порядке.

1. Йодирование остатков тирозина в тиреоглобулине.

2. Синтез три- и тетрайодтиронинов путем объединения двух йодированных молекул тирозина.

3. Поступление йодида в эпителиальные клетки фолликул.

4. Связывание йодтиронинов с тироксинсвязывающим белком плазмы крови.

5. Захват и гидролиз йодтиреоглобулина эпителиальными клетками фолликул.

6. Поступление йодтиронинов в клетки-мишени.

Вид 4. Тест 1. Глюкогон относится к гипергликемическим гормонам, потому что усиливает распад липидов.

Тест 2. При избыточной продукции тироксина развивается эндемический зоб, потому что наблюдается недостаточное поступление йода.

Примеры ситуационных задач

Задача 1.Суточный объем мочи у пациента, жалующегося на сухость во рту, постоянную жажду и частое мочеиспускание, 4,5 литра, относительная плотность 1.004 (при норме 1,018 и более), глюкоза, белок и кетоновые тела в моче не обнаружены. Какому заболеванию могут соответствовать результаты анализов? Для обоснования ответа:

а) назовите гормон, синтез и секреция которого нарушена в этом случае;

б) назовите ткани-мишени, на которые действует этот гормон.

Задача 2.Существует выражение: «сахарный диабет это голод среди изобилия». Объясните сущность этого выражения. Для обоснования ответа укажите:

а) в каких тканях при сахарном диабете протекает метаболизм по типу голодания на фоне гипергликемии;

б) какие метаболические пути активируются и тормозятся в этих тканях;

в) какие биохимические «симптомы» сахарного диабета отражают эти изменения метаболизма.

Самостоятельная работа студентов

В статье «Общая схема действия гормонов белковой природы» использованы материалы:

http://magictemple.ru/himicheskaja-priroda-adrenalina/

http://www.yaneuch.ru/cat_38/gormony-belkovoj-prirody/195211.2042851.page2.html

http://lektsia.com/2x6d7e.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *