Мембранно внутриклеточный механизм действия гормонов — Роль гормонов в обеспечении межклеточной сигнализации

Автор: | 20.05.2021

Мембранно внутриклеточный механизм действия гормонов

Роль гормонов в обеспечении межклеточной сигнализации. Трансмембранная передача сигналов в клетку. Мембранные и внутриклеточные рецепторы. Механизмы действия гормонов различных классов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий.

Важное свойство мембран — способность воспринимать и передавать внутрь клетки сигналы из внешней среды. «Узнавание» сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора.

Если сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:

-взаимодействие рецептора с сигнальной молекулой (первичным посредником);

-активация мембранного фермента, ответственного за образование вторичного посредника;

-образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАТ или Са2+;

-активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказьюают влияние на активность внутриклеточных процессов.

Несмотря на огромное разнообразие сигнальных молекул, рецепторов и процессов, которые они регулируют, существует всего несколько механизмов трансмембранной передачи информации: с использованием аденилатциклазной системы, инозитолфосфатной системы, каталитических рецепторов, цитоплазматических или ядерных рецепторов.

К 1ТМС-рецепторам относятся гуанилатциклазы, которые образуют цГМФ из ГТФ.

1й тип: Гуанилатциклаз локализуется в плазматической мембране, активируется внеклеточными Лигандами (Атрионатрийуретический фактор)

2 тип: цитозольный, активируемый оксидом азота, который вызывает расслабление гладкой мускулатуры сосудов, в т.ч. коронарных.

Присоединение гормона активирует 1ТМС рецептор. Гормонорецепторный комплекс проявляет гуанилатциклазную активность, которая помогает добиться получения цГМФ из ГТФ. цГМФ как вторичный посредник активирует протеинкиназу С, которая фосфолирирует (Ф) остатки серина и треонина в белках-мишенях, что активирует белки. цГМФ является активатором фосфодиэстераз, которыее катализируют их распад. цАМФ, тоесть ЦГМФ и цАМФ являются антагонистами. Конечный эффект цГМФ проявляется в изменении транспорта ионов и воды в почках и кишечнике. цГМФ способствует расслаблению миокарда, а в палочках и колбочках стимулирует открытие ионных каналов.

Самая распространенная группа 1ТМС рецепторов являются рецепторные тирозин-киназы, в их структуре имеется 4 домена ( внеклеточный (связывает гормон), трансмембранный, внутриклеточный (с тирозин-киназной активностью), регуляторный)

Важнейшей Т-К являеся рецептор инсулина, его присоединение вызывает автофосфолирирование киназного домена, что приводит к усилению Ф и активации инсулинрецепторного субстрата (IRS-1) Далее включается каскад реакций, усиливается гормональный сигнал, происходит повышение активности протеинкиназ и изменение активности многих ферментов.

Передача сигнала с участие 1ТМС рецепторов, в рецепторе имеются выключатели, это –RAS белки, которые относятся к семейству мономерных ГТФаз, они м.б. активны, если связаны с ГТФ, и дезактивируются при его гидролизе. Активность регулируют белки –БАГ (белок, активирующий ГТФазу) –SOS ( белок, высвобождающий гуаниловые нуклеотиды)

Механизм действия гормонов, взаимодействующих с внутриклеточными рецепторами

Вит Д, ретиноевая к-та, стероидные гормоны и териоидные гормоны взаимодействуют с внутриклеточными рецепторами, поскольку их гидрофобные молекулы свободно диффундируют через плазматическую мембрану

Рецепторы делят на:

-рецепторы стероидных гормонов (минералкортикоидов, андрогенов, прогестерона)

-рецепторы тиреоидных гормонов в т.ч. вит Д и ретиноевой к-ты (находятсяся в цитозоле) они образуют комплексы с белками теплового шока, которые присоединяются к рецептору т.о. что закрывают его ДНК-связывающий домен. Сам рецептор представляет собой комплекс из основного и кислого белка, каждый белок связывает 1 молекулу гормона. Комплекс основного белка и гормона облегчает процесс транскрипции, связываясь с некодирующей цепью ДНК. Рецепторы тиреоидных гормонов находятся в ядре, связанном в хроматиновом состоянии (за исключением рецепторов эстрогенов, которые образуют в ядре комплексы с белками теплового шока) после взаимодействия с рецептором образуется активный комплекс, способный временно блокировать экспрессию генов.

Механизмы действия гормонов

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени- это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных — рецепторы находятся в наружной мембране.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

-аденилатциклазная (или гуанилатциклазная) системы;

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки. До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ. Комплекс «G-белок-ГТФ» активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ. ц-АМФ обладает способностью активировать особые ферменты — протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат- это вещество, которое является производным сложного липида — инозитфосфатида. Оно образуется в результате действия специального фермента — фосфолипазы «С», который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок — кальмодулин. Это низкомолекулярный белок, на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс «Са+2-кальмодулин» становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты — аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса «Са+2-кальмодулин» на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других — ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Принято различать два механизма взаимодействия гормонов с клетками-мишенями:

-мембранный механизм — когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени;

-внутриклеточный механизм — когда рецептор для гормона находится внутри клетки, т. е. в цитоплазме или на внутриклеточных мембранах.

Гормоны обладающие мембранным механизмом действия:

-все белковые и пептидные гормоны, а также амины (адреналин, норадреналин).

Внутриклеточным механизмом действия обладают:

-стероидные гормоны и производные аминокислот — тироксин и трийодтиронин.

Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са+2и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке.

Мембранно-внутриклеточный механизм действия гормонов. Вторичные посредники на примере цГМФ

Пути действия гормонов рассматриваются в виде двух альтерна­тивных возможностей:

1) действия гормона с поверхности клеточной мембраны после связывания со специфическим мембранным рецеп­тором и запуска тем самым цепочки биохимических превращений в мембране и цитоплазме (эффекты пептидных гормонов и катехоламинов);

2) действия гормона путем проникновения через мембрану и связывания с рецептором цитоплазмы, после чего гормон-рецепторный комплекс проникает в ядро и органоиды клетки, где и реализует свой регуляторный эффект (стероидные Гормоны,гормоны щитовидной железы).

Система гуанилатциклаза-цГМФ

Система гуанилатциклаза-цГМФ. Активация мембранной гу-анилатциклазы происходит не под непосредственным влиянием гор­мон-рецепторного комплекса, а опосредованно через ионизирован­ный кальций и оксидантные системы мембран. Типичная стимуля­ция активности гуанилатциклазы ацетилхолином также реализуется опосредованно через Са++ . Через активацию гуанилатциклазы ре­ализует эффект и натриуретический гормон предсердий — атриопептид. Путем активации перекисного окисления стимулирует гу-анилатциклазу биологически активное вещество (тканевой гормон) сосудистой стенки — расслабляющий эндотелиальный фактор. Под влиянием гуанилатциклазы из ГТФ синтезируется цГМФ, активи­рующий цГМФ-зависимые протеинкиназы, которые уменьшают ско­рость фосфорилирования легких цепей миозина в гладких мышцах стенок сосудов, приводя к их расслаблению. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ проти-воложны. Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокра­щения гладких мышц кишечника цГМФ и подавление цАМФ. цГМФ играет роль в гиперполяризации рецепторов сетчатки глаза под влиянием фотонов света. Ферментативный гидролиз цГМФ осущест­вляется с помощью специфической фосфодиэстеразы.

БИЛЕТ №8

Роль паратгормона и кальцитонина в регуляции уровня кальция в крови. Химическое происхождение, механизмы действия, органы-мишени, метаболические эффекты. Патологии, связанные с гипер- и гипофункцией этих гормонов.

Паратгормон — полипептид, состоящий из 84 аминокислотных остатков, образуется и секретируется паращитовидными железами в виде высокомолекулярного прогормона. Прогормон после выхода из клеток подвергается протеолизу с образованием паратгормона. Продукцию, секрецию и гидролитическое расщепление паратиреоидного гормона регулирует концентрация кальция в крови. Снижение её приводит к стимуляции синтеза и высвобождению гормона, а понижение вызывает обратный эффект. Паратгормон повышает концентрацию кальция и фосфатов в крови. Паратиреоидный гормон действует на остеобласты, вызывая повышение деминерализации костной ткани. Активен не только сам гормон, но и его аминоконцевой пептид (1-34 аминокислоты). Он образуется при гидролизе паратиреоидного гормона в гепатоцитах и почках в тем большем количестве, чем ниже концентрация кальция в крови. В остеокластах активизируются ферменты, разрушающие промежуточное вещество кости, а в клетках проксимальных канальцев почек ингибируется обратная реабсорбция фосфатов. В кишечнике усиливается всасывание кальция.

Кальцитонин— гормон гипокальциемического действия, пептидной природы, синтезируется в С-клетках (парафолликулярные клетки) щитовидной железы. Некоторое количество синтезируется с легких. Впервые на существование кальцитонина, обладающего способностью поддерживать постоянный уровень кальция в крови, указал в 1962 году Д.Кнопп, который ошибочно считал, что этот гормон синтезируется паращитовидными железами.
Главными мишенями действия гормона являются кости и почки. Основная физиологическая роль кальцитонина состоит в предотвращении гиперкальциемии, которая возможна при поступлении кальция в организм. Эта функция осуществляется, скорее всего, путем торможения выхода кальция из костей.
Основной функций данного гормона является антагонистическое действие по отношению к паратгормону (гормону, вырабатываемого паращитовидными железами, так же участвующему в регуляции метаболизма кальция и повышающего содержание кальция в крови. См «Паратгормон»). Действие кальцитонина и паратгормона на кости имеет в общем противоположный характер, но в то же время он не является антипаратгормоном. Скорее всего эти гормоны действуют на различные виды клеток в костях.
Регуляция синтеза кальцитонина контролируется концентрацией кальция в крови. Увеличение концентрации кальция стимулирует синтез гормона, снижение приводит к обратному эффекту. Действие кальцитонина проявляется в угнетении активности остеокластов, уменьшении резорбции кости, предотвращении высвобождения кальция из кости и, как следствие, снижении содержания кальция в крови. Кальцитонин оказывает прямое влияние на почки, повышая экскрецию кальция, фосфора и натрия за счет подавления их канальцевой реабсорбции. Кальцитонин ингибирует всасывание кальция в тонкой кишке.
В клинической практике определение содержание кальцитонина в крови может иметь важное значение для диагностики медуллярного рака щитовидной железы, поскольку его содержание при данной форме рака в сыворотке крови увеличивается. Следует учитывать, что повышение содержания кальцитонина в крови может происходить при раке легкого и молочной железы и опухолей других локализаций (рак простаты). Некоторое повышение в содержании возможно при беременности, лечении эстрогенами, введении кальция, передозировке витамина Д. Поэтому постановка диагноза проводится с учетом всех возможных методов обследования.

Органы-мишенидля ПТГ — кости и почки. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клетки возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.

Гиперпаратиреоз

При первичном гиперпаратиреозе нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Это заболевание встречается с частотой 1:1000. Причинами могут быть опухоль околощитовидной железы (80%) или диффузная гиперплазия желёз, в некоторых случаях рак паращитовидной железы (менее 2%). Избыточная секреция паратгормона приводит к повышению мобилизации кальция и фосфатов из костной ткани, усилению реабсорбции кальция и выведению фосфатов в почках. Вследствие этого возникает гиперкальциемия, которая может приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц, увеличивается риск переломов позвоночника, бедренных костей и костей предплечья. Увеличение концентрации фосфата и ионов кальция в почечных канальцах может служить причиной образования в почках камней и приводит к гиперфосфатурии и гипофосфатемии.

Вторичный гиперпаратиреозвстречается при хронической почечной недостаточности и дефиците витамина D3 и сопровождается гипокальциемией, связанной в основном с нарушением всасывания кальция в кишечнике из-за угнетения образования кальцитриола поражёнными почками. В этом случае секреция паратгормона увеличивается. Однако повышенный уровень паратгормона не может нормализовать концентрацию ионов кальция в плазме крови вследствие нарушения синтеза кальцитриола и снижения всасывания кальция в кишечнике. Наряду с гипокальциемией, нередко наблюдают гиперфостатемию. У больных развивается повреждение скелета (остеопороз) вследствие повышения мобилизации кальция из костной ткани. В некоторых случаях (при развитии аденомы или гиперплазии околощитовидных желёз) автономная гиперсекреция паратгормона компенсирует гипокальциемию и приводит к гипер-кальциемии (третичный гиперпаратиреоз).

Гипопаратиреоз

Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желёз, — гипокальциемия. Понижение концентрации ионов кальция в крови может вызвать неврологические, офтальмологические нарушения и нарушения ССС, а также поражения соединительной ткани. У больного гипопарати-реозом отмечают повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм

Механизм действия гормонов

2015-03-20
10279

а) Цитозольный механизм действия гормонов.

По цитозольному механизму действуют гормоны 1 группы, т.е. стероиды и йодтиронины, а также кальцитриол(рис.2). Их липофильные молекулы легко диффундируют сквозь плазматическую мембрану клеток-мишеней, в цитозоле которых они связываются со своим рецептором. Рецептор, в частности глюкокортикоидов, содержит три функционально различные области: 1 – участок связывания гормона, расположенный в С-концевой части полипептидной цепи; 2 – участок, направляющий комплекс гормон-рецептор к ДНК. 3. Специфическая часть N-концевой области молекулы рецептора, необходимая для связывания с регуляторным участком транскриптона. До взаимодействия с гормоном эта область связана с белком шапероном, который препятствует присоединению рецептора к ДНК.

Стероид взаимодействует со своим рецептором с образованием комплекса гормон-рецептор. В дальнейшем комплекс подвергается активации, в результате которой происходит объединение двух молекул рецептора с образованием димера, который приобретает способность связываться с ДНК. Гормон-рецепторный комплекс перемещается в ядро, где связывается с регуляторными участками генов, которые носят название гормон-чувствительные элементы, выполняющие функции либо энхансеров т.е. усилителей транскрипции, либо сайленсоров т.е. успокоителей транскрипции. Результатом связывания гормон-рецепторного комплекса с энхансером является инициация транскрипции, появляются новых мРНК, которые транслируются на рибосомах в цитозоле клеток. При связывании ГРК с сайленсорами происходит подавление транскрипции и соответственно угнетение синтеза белка. Таким образом, данная группа гормонов оказывает влияние на метаболизм путем изменения количества белков-ферментов.

Рис.2 Цитозольный механизм действия гормонов

б) Мембранно-внутриклеточный механизм действия гормонов

Гормоны, которые хорошо растворяются в воде и не имеют специальных переносчиков через липидный слой мембраны, не могут проникнуть внутрь клетки-мишени. Рецепторы этих гормонов располагаются на плазматической мембране. Образующийся гормон-рецепторный комплекс регулирует концентрацию внутриклеточных посредников действия гормона.

В качестве внутриклеточных посредников могут выступать цАМФ, цГМФ, ионы кальция, метаболиты фосфоинозитидов и окислы азота. Посредством цАМФ реализуют свое действие глюкагон, кальцитонин, кортикотропин, α2, b- адренергические катехоламины, паратгормон, вазопрессин, и другие. Рассмотрим механизм действия перечисленных гормонов (рис.3). Вначале гормон образует со своим рецептором комплекс. Гормон-рецепторный комплекс через специальный триггерный белок (G-белок) активирует фермент аденилатциклазу, расположенную на внутренней поверхности мембраны. Этот фермент преобразует АТФ в циклический АМФ. G-белок приобретает способность активировать аденилатциклазу после присоединения к нему ГТФ с образованием ГТФ-G-белок. Одна из субъединиц G-белка осуществляет гидролиз ГТФ, лишает активности этот белок и активация аденилатциклазы прекращается. Некоторые факторы, например токсины холерного вибриона холерген и возбудителя коклюша способствуют аденилированию G-белка. Это поддерживает его в состоянии высокой активности и постоянно стимулирует активность аденилатциклазы. Высокий уровень цАМФ определяет клиническую картину заболеваний: диарею при холере и кашель при коклюше. Образовавшийся цАМФ является аллостерическим модулятором активности протеинкиназы. Протеинкиназа содержит в своем составе 4 субъединицы: две из них регуляторные, а две каталитические. Присоединение цАМФ к регуляторным субъединицам протеинкиназы. приводит к диссоциации комплекса и выделение в среду двух каталитических субъединиц. цАМФ-зависимые протеинкиназы осуществляют ковалентную модификацию фермента-мишени путем фосфорилирования, за счет чего достигается изменение их активности и характер клеточного ответа. Описанные внутриклеточные события характеризуются тем, что в ходе их развития происходит многократное усиление исходного гормонального сигнала. Так для адреналина кратность амплификации составляет 10 6 . Это позволяет добиться острого клеточного ответа при действии адреналина.

цАМФ является аллостерическим модулятором не только цитоплазматических протеинкиназ, но и ядерных. Активация ядерных протеинкиназ также сопровождается фосфорилированием белков, выполняющих роль факторов транскрипции. Благодаря активации данных белков происходит усиление транскрипции, появление новых матричных РНК и последующая их трансляция на рибосомах. Появление новых белков-ферментов приводит к

Рис.3 Мембранно-внутриклеточный механизм действия гормонов, использующий цАМФ в качестве вторичного посредника

увеличению мощности ферментативного аппарата клетки и ускорению определенных метаболических путей. Таким образом, через образование цАМФ гормоны могут оказывать влияние как на активность имеющихся в клетке ферментов, так и на скорость их синтеза.

в) Механизм действия гормонов, использующих фосфоинозитидный каскад.

Примерами гормонов, использующих этот механизм, могут быть тиреолиберин, гонадолиберин, вазопрессин.. После связывания гормона с рецептором происходит активация мембраносвязанного фермента фосфолипазы С, которая расщепляет один из фосфолипидов мембраны фосфатидилинозитолдифосфат на инозитолтрифосфат и диацилглицерол (рис.4). Инозитолтрифосфат будучи водорастворимым компонентом перемещается в цитозоль и активирует кальциевые АТФ-азы, благодаря которым осуществляется перекачивание ионов кальция из пузырьков эндоплазматического ретикулума и митохондрий. Ионы кальция связываются с белком кальмодуллином в комплексе, с которым активируют протеинкиназы. Протеининазы фосфорилируют белки-ферменты и таким образом изменяют их активность. Второй продукт гидролиза фосфотидилинозитолдифосфата диацилглицерол является физиологическим активатором протеинкиназы С, расположенной на внутренней поверхности плазматической мембраны. Для проявления ее максимальной активности необходим также ионизированный кальций. Протеинкиназа С участвует в регуляции клеточных процессов путем фосфорилирования различных белков-мишеней.

В статье «Мембранно внутриклеточный механизм действия гормонов» использованы материалы:

http://infopedia.su/10x8ebe.html

http://megaobuchalka.ru/9/13637.html

http://studopedia.ru/6_77381_mehanizm-deystviya-gormonov.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *