Классификация гормонов по механизму действия — Классификация гормонов

Автор: | 20.05.2021

Содержание

Классификация гормонов по механизму действия

Классификация гормонов

Гормоны классифицируются по химическому строению, биологическим функциям, месту образования и механизму действия.

Классификация по химическому строению.

По химическому строению гормоны делят на 3 группы (табл. 12.1):

1. пептидные или белковые;

2. производные аминокислот;

4. производные арахидоновой кислоты – эйкозаноиды (оказывают местное действие)

Классификация гормонов по химическому строению

Пептидные (белковые)

6. Лютеинеизирующий гормон

7. Фолликулостимули-рующий гормон

8. Мелоноцитстимули-рующий гормон

Производные аминокислот

3. Трийодтиронин (Т 3)

Стероиды

Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 12.2.)

Таблица 12.2. Классификация гормонов по биологическим функциям.

Регулируемые процессы Гормоны Обмен углеводов, липидов, аминокислот. Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин. Водно-солевой обмен. Альдостерон, вазопрессин. Обмен кальция и фосфатов. Паратгормон, кальцитонин, кальцитриол. Репродуктивная функция. Эстрогены, андрогены, гонадотропные гормоны. Синтез и секреция гормонов эндокринных желез. Тропные гормоны гипофиза, либерины и статины гипоталамуса.

Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.

Классификация по месту образования

По месту образования гормоны делятся на гормоны:

3. щитовидной железы

4. паращитовидных желез

5. поджелудочной железы

7. половых желез.

Классификация по механизму действия

По механизму действия гормоны можно разделить на 3 группы:

1. Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;

2. гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;

3. гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

Основные свойства и особенности действия гормонов

1. Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях – 10–8 – 10–11М.

2. Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.

3. Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:

• пептидные гормоны: сек – мин;

• белковые гормоны: мин – часы;

• стероидные гормоны: часы;

4. Специфичность биологического действия.

5. Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.

6. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых – стимулируют анаболизм.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

1. Роль гормонов в процессах развития

1. Роль гормонов в процессах развития Если гормон равномерно распределяется по всему организму, то он принципиально не может создавать различий между совершенно одинаковыми клетками. Действительно, если клетки одинаковы, то и их реакция на любые внешние воздействия, в

2. Действие стероидных гормонов

2. Действие стероидных гормонов Стероидные гормоны являются относительно простыми органическими соединениями с небольшим молекулярным весом. О механизме их действия известно сейчас больше, чем о действии других гормонов. Скелет стероидных гормонов образован четырьмя

3. Действие белковых гормонов

3. Действие белковых гормонов Полипептидные гормоны известны, по-видимому, еще далеко не все. Среди них есть настоящие белки, хотя и небольшого молекулярного веса, а есть и полипептиды, состоящие всего из 8—11 аминокислот, замкнутых в кольцо. Настоящие белки синтезируются

Черный рынок гормонов

Черный рынок гормонов Впервые искусственный гормон роста синтезировали американцы. Произошло это в 1996 г. Первая попытка оказалась неудачной, поскольку была получена не точная копия гормона, а лишь его укороченный вариант (часть аминокислотной цепочки), который никак не

Классификация.

Классификация. Начиная с отдаленнейшего периода истории мира, сходство между организмами выражается в нисходящих степенях, вследствие чего их можно классифицировать по группам, соподчиненным другим группам. Эта классификация непроизвольна, как произвольна, например,

Глава 12. Биохимия гормонов

Глава 12. Биохимия гормонов Гормоны (от греческого hormaino – побуждаю) – это биологически активные вещества, которые выделяются эндокринными клетками в кровь или лимфу и регулируют в клетках-мишенях биохимические и физиологические процессы.В настоящее время предложено

Биороль гормонов.

Биороль гормонов. Гормоны регулируют многие жизненные процессы – метаболизма, функции клеток и органов, матричные синтезы (транскрипцию, трансляцию) и другие процессы, определяемые геномом (пролиферацию, рост, дифференцировку, адаптацию, клеточный шок, апоптоз и

Рецепторы гормонов

Рецепторы гормонов Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Клетки, наиболее чувствительные к влиянию определенного гормона, называют клеткой-мишенью. Специфичность гормонов по отношению к клеткам-мишеням

Глава 13. Особенности действия гормонов

Глава 13. Особенности действия гормонов Гормоны гипоталамуса ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов

Применение гормонов в медицине

Применение гормонов в медицине Гормоны применяют для восполнения их дефицита в организме при гипофункции эндокринных желез (заместительная терапия): 1. инсулин – при сахарном диабете;2. тироксин – при гипофункции щитовидной железы;3. соматотропин – при гипофизарной

Немецкая классификация:

Немецкая классификация: 1 группа — шпицы и северные собаки,2 группа — пинчеры и шнауцеры,3 группа — доги и мастиффы,4 группа — борзые,5 группа — пастушьи и сторожевые собаки (догообразные),6 группа — овчарки,7 группа — охотничьи собаки (подружейные),8 группа — таксы и

Поливалентность гормонов

Поливалентность гормонов Опасность гормональных препаратов связана с тем, что каждый гормон воздействует не на одну ткань или орган. Любой гормон имеет несколько тканей-мишеней (рис. 2.7). Рис. 2.7. Поливалентность гормонов. Каждый гормон связывается с рецепторами (R),

Четыре типа влияния гормонов на поведение

Четыре типа влияния гормонов на поведение Подобно тому как психика неразрывно связана с моторной функцией, психика и поведение взаимосвязаны с висцеральной сферой, т. е. сферой внутренних органов, в том числе и с гормонами.Связи психики с висцеральными системами подчас

Психотропные эффекты стрессорных гормонов

Психотропные эффекты стрессорных гормонов В 1912 г., до публикации работ Уолтера Кеннона, русский врач В. Н. Сперанский писал, что «существуют ЭМ-гормоны и вещества, поступающие в кровь из пищи, присутствие которых в крови в определенном количестве обязательно для

Роль гормонов

Роль гормонов Копулятивное поведение тесно связано с эндокринной функцией. Человек принципиально отличается от животного тем, что у него оно не запускается гуморальными факторами, как у животных. Поведение спаривания у человека не запускается гуморальными факторами,

Роль других гормонов

Роль других гормонов Центральным гормоном репродуктивной системы человека является гонадолиберин, вырабатываемый в гипоталамусе. По всей вероятности, именно он является гормоном, который может индуцировать копулятивное поведение. Экспериментальное введение

Классификация и механизм действия гормонов

ГОРМОНЫ

В процессе эволюции с возникновением многоклеточных организмов для обеспечения взаимодействия между клетками возникли нервная и эндокринная системы. Эти две системы регулируют функции организма, взаимодействуя между собой.

В эндокринную систему входят специальные железы, клетки которых выделяют во внутреннюю среду организма, т.е. в кровь и лимфу, химические регуляторы, получившие название гормонов.

Гормоны − это органические соединения различной химической природы, вырабатываемые эндокринными железами (или железами внутренней секреции), которые транспортируются кровью и .лимфой к клеткам мишеням и активно влияют на процессы жизнедеятельности.

Как исключение, некоторые гормоны могут образовываться и непосредственно в клетках и других органах и тканях.

Гормоны, как и витамины, проявляют высокую биологическую активность в очень малых количествах, и это воздействие имеет ряд особенностей: высокая специфичность действия, относительно небольшой период жизни, способность оказывать действие на значительном расстоянии от места их образования.

Гормоны, подобно витаминам, не являются ни пластическим, ни энергетическим материалом, однако, воздействуя на специализированные клетки мишени определенных органов или тканей, способны проявлять биологическую активность и интегрировать сложный процесс метаболизма путем изменения скорости ферментативных реакций.

В настоящее время считают, что гормоны являются активаторами или ингибиторами ферментов и так влияют на процессы метаболизма в организме. Необходимо отметить, что деятельность эндокринных желез не автономна, а находится под контролем центральной нервной системы. Под прямым контролем нервной системы находятся не все гормоны, а лишь мозговое вещество надпочечников и гипоталамус, другие железы внутренней секреции связаны с нервной системой через гормоны гипоталамуса (отдел головного мозга) и гипофиза.

К железам внутренней секреции относятся: щитовидная, паращитовидная, поджелудочная, надпочечники, гипофиз, половые железы, зобная или вилочковая железа. Заболевания, связанные с нарушением функций эндокринных желез, можно рассматривать как следствие гипофункции железы − недостаточное образование гормона, либо гиперфункции ее − избыточное выделение гормона в кровь.

Классификация и механизм действия гормонов

I) Амины, или пептидные гормоны (инсулин) − имеют большую молекулярную массу. По химической природе являются белками и оказывают кратковременный эффект, но быстрый − их действие проявляется уже через несколько минут. Они не проникают внутрь клетки, а действуют через специфические рецепторы, связанные с ферментом аденилатциклазой, которая расщепляет АТФ после присоединения гормона и далее через систему сложных реакций происходит активация определенных ферментов внутри клетки, которые и осуществляют конечный эффект гормона. Описанный механизм гормонального действия аминов или пептидов можно представить следующей схемой:

II) Стероидные гормоны имеют относительно небольшой размер молекул, поэтому проникают внутрь клетки и с помощью специфических переносчиков − рецепторов транспортируются из цитоплазмы в клеточное ядро. В ядре гормон обратимо взаимодействует со специфическим участком ДНК, активирует определенный ген и индуцирует (посредством синтеза информационной РНК) биосинтез белка-фермента на рибосомах. Этот новый фермент реализует конечный гормональный эффект. Стероидные гормоны обеспечивают длительный эффект.

А) Щитовидная железа

Вырабатывает гормоны тироксин, трийодтиронин, а также кальцитонин.

Впервые получены в 1914 году, а в 1926 была установлена их химическая формула. Первых два в своем составе имеют I2.

Гипофункция (недостаток) у детей приводит к замедлению обменных процессов, карликовому росту, уродливому строению тела и резкой задержке умственного развития − кретинизму. У взрослых вызывает заболевание − микседему, чаще встречается у женщин и характеризуется понижением водно-солевого обмена, основного и жирового обмена, отечностью, ожирением и старческим видом. При недостатке I2 в пище и воде развивается эндемический зоб − наблюдается резкое увеличение железы за счет ее глубокого перерождения. Профилактика этого заболевания − введение в пищу I2.

При гиперфункции (избытке) гормонов щитовидной железы развивается базедова болезнь, которая характеризуется повышением общего обмена и температуры тела, учащениям пульса, пучеглазием.

Кальцитонин − способен снижать содержание кальция в крови за счет торможения выделения кальция из костной ткани.

Б) Паращитовидные железы

Очень маленькие железы, но играют важную физиологическую роль. Был выделен паратгормон, который повышает уровень кальция в крови. Его эффект противоположный кальцитонину. Кроме того, паратгормон влияет на возбудимость нервной системы. Вероятно, паратгормон совместно с витамином Dи кальцитонином осуществляет контроль над распределением кальция, фосфора и магния между костями, тканями и жидкостями организма.

Классификация и механизм действия гормонов

Гормоны. Классификация и механизм действия гормонов. Автор – доцент Рыскина.

Описание презентации по отдельным слайдам:

Гормоны. Классификация и механизм действия гормонов.
Автор – доцент Рыскина Е.А.

4 основные системы регуляции метаболизма:
Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов);
Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням
(на рис. А);
Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство —
эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В);
Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.)
Все уровни регуляции интегрированы и действуют как единое целое.

Эндокринная система регулирует обмен веществ посредством гормонов.
Гормоны (др.-греч. ὁρμάω — возбуждаю, побуждаю) — биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.

Классическим гормонам присущ ряд признаков:
Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей
Избирательность действия
Строгая специфичность действия
Кратковременность действия
Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи
Действуют опосредованно через белковые рецепторы и ферментативные системы

Организация нервно-гормональной регуляции
Существует строгая иерархия или соподчиненность гормонов.
Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.

Регуляция уровня гормонов в организме
Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус.
Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Классификация гормонов
по биологическим функциям;
по механизму действия;
по химическому строению;
различают 4 группы:
1. Белково-пептидные
2. Гормоны-производные аминокислот
3. Гормоны стероидной природы
4. Эйкозаноиды

Классификация гормонов по биологическим функциям.

Классификация гормонов по химическому строению

1. Белково — пептидные
гормоны
Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы — инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон.
Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.

Главный анаболический гормон – инсулин, главный катаболический гормон — глюкагон

Некоторые представители белково — пептидных
гормонов: тиролиберина (пироглу-гис-про-NН2), инсулина и соматостатина.

2. Гормоны — производные аминокислот
Являются производными аминокислоты —
тирозина.
К ним относятся гормоны щитовидной железы — трийодтиронин (I3) и тироксин (I4), а также — адреналин и норадреналин – катехоламины.

Гормоны щитовидной железы

Схема синтеза трийодтиронинов

3. Гормоны стероидной природы

Синтезируются из холестерина (на рис.)
Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон)
Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон)
Половые гормоны: андрогены (19 «С») и эстрогены (18 «С»)

Синтез основных кортикостероидов

Предшественником всех эйкозаноидов является арахидоновая кислота.
Они делятся на 3 группы – простагландины,
лейкотриены,
тромбоксаны.
Эйказоноиды — медиаторы (локальные гормоны) — широко распространенная группа сигнальных веществ, которые образуются почти во всех клетках организма и имеют небольшую дальность действия.
Этим они отличаются от классических гормонов, синтезирующихся в специальных клетках желез внутренней секреции.

Характеристика разных групп эйказоноидов
Простагландины (Pg) — синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F.
Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела.
Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией — ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка.

Тромбоксаны и лейкотриены
Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов.
Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца.
Выделяют 6 типов лейкотриенов: A, B, C, D, E, F.
В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления.
Также вызывают сокращение мускулатуры бронхов в дозах в 100—1000 раз меньших, чем гистамин.

Взаимодействие гормонов с рецепторами клеток-мишеней
Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ.
Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов.
Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.

Общая характеристика рецепторов
Рецепторы могут находится:
— на поверхности клеточной мембраны
— внутри клетки – в цитозоле или в ядре.
Рецепторы – это белки, могут состоять из нескольких доменов. Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены. Внутриклеточные (ядерные) – домены связывания с гормоном, с ДНК и с белками, регулирующие трансдукцию.

Основные этапы передачи гормонального сигнала:
через мембранные (гидрофобные) и внутриклеточные (гидрофильные) рецепторы. Это быстрый и медленный пути.

Гормональный сигнал меняет скорость метаболических процессов ответ путем:
— изменение активности ферментов
— изменение количества ферментов.
По механизму действия различают гормоны:
— взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и
— взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)

Передача гормонального сигнала через
внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов
(Т3 и Т4). Медленный тип передачи.

Передача гормонального сигнала через ядерный рецептор.

Передача гормонального сигнала через мембранные рецепторы
Передача информации от первичного посредника гормона осуществляется через рецептор.
Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров.
Сопряжение рецептора с эффекторной системой осуществляется через G –белок.
Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов»
Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.

Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – цАМФ, цГТФ, ИФ3, ДАГ, СА2+, NO.

Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система.
Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы (α,β и γ).
В отсутствии гормона
α- субъединица связана с ГТФ и аденилатциклазой.
Комплекс гормон-рецептор приводит к отщеплению димера
βγ от αГТФ. Субъединица αГТФ
активирует аденилатциклазу, катализирующую образование
циклической АМФ (цАМФ).
цАМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов. Протеинкиназы различают А,В,С и др.

Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении). Инсулин блокирует этот процесс.
Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее.
ТАГ-липаза отщепляет от триацилглицеролов жирные кислоты с образованием глицерола.
Жирные кислоты окисляются и обеспечивают организм энергией.

Передача сигнала с адренорецепторов. АС – аденилатциклаза, PkA – протеинкиназа А, PkC – протеинкиназа С, ФлС – фосфолипаза С, ФлА2 – фосфолипаза А2, ФлD – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, АхК – арахидоновая кислота, PIP2 – фосфатидилинозитол бифосфат, IP3 – инозитол трифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.

Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке цАМФ из АТФ и активацию цАМФ зависимой протеинкиназы А. βγ-субъединицы Gs-белка активируют Са2+-каналы L-типа и макси-K+-каналы.
Под влиянием цАМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками.

Взаимодействие бета-2 рецептора (обозначен синим цветом) c G-белками (обозначены зеленым цветом). Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы.
Их называют «семиспиральными», поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик», способный воспринять сигнал и передать конформационные изменения всей молекуле.

G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы — гетеротримерные («большие») и «малые». Гетеротримерные G-белки — это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки — это белки из одной полипептидной цепи, они имеют молекулярную массу 20—25 кДа и относятся к суперсемейству Ras малых ГТФаз.
Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков
участвуют во внутриклеточной
сигнализации.

Циклический аденозинмонофосфат (циклический AMФ, цAMФ, cAMP) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану.

Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ

Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G — цГМФ.
Са2+ — кальмодулинзависимые протеинкиназы находятся под контролем концентрации СА2+.
Протеинкиназы типа С регулируются ДАГ.
Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ.
Иногда субъединица мембранного рецептора может обладать активностью фермента. Например: тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном.

Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью.
Тирозинкиназа запускает процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала.
Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование цАМФ.
Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Другая система – гуанилатциклазная мессенджерская система.
Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент).
Молекулы цГТФ могут активировать ионные каналы или протеинкиназу G, фосфорилирующую ферменты.
цГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

Передача гормонального сигнала через NO

Инозитолфосфатная система.
Связывание гормона с рецептором, вызывает изменение конформациии рецептора.
Происходит диссоциация G-белка и ГДФ заменяется на ГТФ.
Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С.
Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4,5-бисфосфата (ФИФ2) и образование инозитол-1,4,5-трифосфат (ИФ3) и диацилглицерол (ДАГ).
ДАГ участвует в активации фермента протеинкиназы С (ПКС).
Инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са2+ поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.

Биологическое действие гормона роста (ифр – инсулиноподобный фактор роста)

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы
  • Красильникова Екатерина МихайловнаНаписать 234 27.11.2020
  • Другое
  • Презентации
  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников
    06.12.2020 0
    16.11.2020 0
    03.11.2020 0
    02.11.2020 0
    15.08.2020 0
    17.07.2020 0
    12.07.2020 0
    19.05.2020 0

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

В статье «Классификация гормонов по механизму действия» использованы материалы:

https://bio.wikireading.ru/7796

http://lektsii.org/6-23160.html

http://infourok.ru/klassifikaciya-i-mehanizm-dejstviya-gormonov-4778170.html

Добавить комментарий

Ваш адрес email не будет опубликован.