Белково пептидные гормоны — Параграф 99 1

Автор: | 20.05.2021

Белково пептидные гормоны

Параграф 99 1. белково-пептидные гормоны

Автор текста – Анисимова Елена Сергеевна. Авторские права защищены. Продавать текст нельзя.
Курсив НЕ НУЖНО зубрить.

Замечания можно прислать по почте: exam_bch@mail.ru
https://vk.com/bch_5

См. п.91, 56-59, 83, 6. И файл «91 ТАБЛИЦА»

ПАРАГРАФ 99 1:
«Белково-пептидные гормоны.»

99. 1. Белково-пептидные гормоны (БПГ): общие свойства.
99. 2. Классификация белково-пептидных гормонов.
99. 3. Органы, клетки и биологические жидкости, в которых образуются БПГ.

Белково-пептидными называют гормоны,
которые химически являются пептидами или белками (п.56, 57).

99. 1. Белково-пептидные гормоны: общие свойства.

1. Все они представляют собой последовательности аминокислотных остатков
(аминоацилов), соединённых между собой пептидными связями (п.56).
Из-за этого белково-пептидные гормоны при попадании в ЖКТ
расщепляются пищеварительными ферментами (пептидазами) на аминокислоты,
как и белки пищи (п.61).
Поэтому при лечении гормонами белково-пептидной природы делают инъекции,
а не в виде таблеток или сиропов принимают внутрь препараты гормонов.

2. Все белково-пептидные гормоны образуются
из полипептидных цепей-предшественников,
при расщеплении определённых связей этих цепей,
то есть путём ОГРАНИЧЕННОГО ПРОТЕОЛИЗА предшественника (п.83).

Полипептидная цепь-предшественник синтезируется, как и все белки,
из аминокислот в ходе процесса, который называется трансляцией и осуществляется рибосомами (п.82).
Для трансляции нужна мРНК, кодирующая данную ППЦ.
мРНК образуется в результате транскрипции и процессинга – п.80 и 81.

Пример ППЦ-предшественника белково-пептидных гормонов –
1) предшественник КОРТИКОтропина (АКТГ, п. 100),
2) МЕЛАНОцит-стимулирующих гормонов (МСГ) и
3) ОПИАТОВ,
4) липопротопина,
который называется ПроОпиоМеланоКортином (ПОМК).

Синтез ПОМК в гипофизе
стимулируется кортиколиберином и снижается ГКС (п.108).
Поэтому при избытке ГКС синтез ПОМК снижен,
что приводит к снижению синтеза опиатов,
что может быть причиной неуравновешенности (до психоза),
абдоминальных болей
и общего физического дискомфорта при избытке ГКС.

Нарушения ограниченного протеолиза ППЦ-предшественников
могут привести к дефициту белково-пептидных гормонов.
Другой пример – ограниченный протеолиз предшественника инсулина в п.102.

3. Все белково-пептидные гормоны КОДИРУЮТСЯ ГЕНАМИ.

Точнее, генами кодируются ППЦ-предшественники
белково-пептидных гормонов.
Мутации в этих генах могут привести
к нарушению работы белково-пептидных гормонов
(например, к дефициту гормонов).
Например, мутации в генах, которые кодируют СТГ или ИФР,
приводят к карликовости – п.100.
Лечится это инъекциями СТГ И ИФР,
получаемых для медицины методами генной инженерии.

4. Клетки, синтезирующие белково-пептидные гормоны.

Белково-пептидные гормоны синтезируются
многими клетками организма, не только эндокринными железами. – см. п. 99.3.
Один и тот же гормон может синтезироваться в разных клетках.
Например, соматостатин синтезируется
гипоталамусом
и поджелудочной железой (дельта-клетками ПЖЖ).
Соматостатин гипоталамуса снижает синтез соматотропина,
а соматостатин ПЖЖ снижает синтез инсулина и глюкагона.
Другой пример – холецистокинин и опиаты, которые синтезируются:
и в ЖКТ, и в головном мозге.

5. Белково-пептидные гормоны гидрофильны (п.92),

поэтому не способны проходить через мембраны,
поэтому рецепторы белково-пептидных гормонов расположены на поверхности цитоплазматических мембран клеток – п.92.
В передаче сигнала от белково-пептидного гормона внутрь клетки
могут участвовать мембранные G-белки, протеинкиназы, тирозинкиназы, вторые посредники – п.94-98.

6. Способ промышленного производства белково-пептидных гормонов

для лечения ими – генная инженерия (технология рекомбинантных ДНК).
Этим способом получают:
1) инсулин для диабетиков (п.103),
2) соматотропин для карликов (п.100),
3) лептин для людей с ожирением (п.99.2 и 44.3),
4) эритропоэтин для людей с некоторыми формами анемии (п.121),
5) гонадотропины для лечения бесплодия (некоторых форм)
и многие другие гормоны,
без которых вылечить ряд больных было бы невозможно другими известными методами — п.88 и 124.

99. 2. Классификация белково-пептидных гормонов. См. п. 91.

1. Классификация по химической природе.

Белково-пептидные гормоны делятся на БЕЛКИ И ПЕПТИДЫ.
Они отличаются тем, что
в состав пептидов входят от 2 до 100 аминоацилов,
а в состав белков входят от 100 аминоацилов.
Но это формально; например, инсулин, состоящий из 51 аминоацила, тоже является настоящим белком.

Белки делят на ПРОСТЫЕ И СЛОЖНЫЕ.
Простые белки состоят только из аминоацилов,
а в состав сложных белков входят другие, небелковые вещества,
образующие комплексы с ППЦ.
Обычно в состав белковых гормонов входят углеводные компоненты.
Такие сложные белки (в состав которых входят углеводы) называются ГЛИКОПРОТЕИНАМИ.
О структуре гликопротеинов – п.38 и 39.
Углеводный компонент представлен олигосахаридом
(соединением из нескольких моносахаридных остатков, соединённых гликозидными связями),
участвует в специфическом распознавании.
Примеры гликопротеиновых гормонов – тиреотропин, гонадотропины.

2. Классификация по клеткам, которые синтезируют белково-пептидные гормоны (См. файл «91 ТАБЛИЦА» и далее 99.3):

1) гормоны головного мозга (нейропептиды, в том числе опиоиды и т.д.),
2) гипоталамуса (либерины, окситоцин, АДГ = вазопрессин),
3) гипофиза (тропины, тропные гормоны),
4) щитовидной железы (кальцитонин, не йодтиронины –они не белковые),
5) поджелудочной железы (инсулин, глюкагон, соматостатин),
6) жировых клеток (лептин),
7) ФРК, синтезируемые разными клетками,
8) клетки почек (эритропоэтин),
9) клетки печени (соматомедины, ИФР)
и т.д. – см. п. 91.

3. Классификация по виду регуляции.

Как и другие гормоны (п.91), белково-пептидные гормоны
1) бывают ДИСТАНТНЫМИ гормонами (инсулин, ТТГ, опиоиды),
2) бывают НЕЙРОГОРМОНАМИ (медиаторами и модуляторами; примеры – либерины, опиоиды),
3) бывают гормонами МЕСТНОГО действия (инсулин),

БПГ могут участвовать в регуляции:

1) ЭНДОкринной (при которой гормон доставляется к клетке-мишени с током крови),
2) НЕЙРОкринной (при которой гормон диффундирует в синаптической щепи),
3) ПАРАкринной (при которой гормон диффундирует в ткани) и
4) АУТОкринной (при которой гормон действует на ту же клетку, которая его секретировала).

4. Можно выделить группы гормонов, которые действуют:

1) через РЕЦЕПТОРЫ разных типов,
2) через разные ВТОРЫЕ ПОСРЕДНИКИ,
3) вызывают ЭФФЕКТЫ разных типов – п.92.

Например, группа гормонов, действующих через тирозинкиназные рецепторы
(рецепторы, которые регулируют активность тирозинкиназ)
и поэтому относящиеся к онкобелкам. Примеры – СТС, инсулин – п.98.

Гормоны, влияющие на концентрацию ионов кальция в клетке (в гиалоплазме),
называются кальций-зависимыми (п.97): ангиотензин, либерины и т.д.

Гормоны, действующие через изменение концентрации цАМФ в клетке. И т.д.

5. Можно классифицировать белково-пептидные гормоны
ПО ВЛИЯНИЮ НА ОРГАНИЗМ.

Например, есть гормоны, снижающие артериальное давление –
это ГИПОТЕНЗИВНЫЕ гормоны, примеры – НУП и адреномедуллин (п.113).

Есть гормоны, которые повышают артериальное давление – это ГИПЕРТЕНЗИВНЫЕ гормоны. Пример – ангиотензин, АДГ (п.112. 113).

Есть гормоны, которые стимулируют синтезы в организме, деление клеток, рост, заживление, увеличение мышечной массы –
их называют АНАБОЛИЧЕСКИМИ гормонами или анаболиками (это сленг).

Есть анаболические стероиды, но среди белково-пептидных гормонов
анаболическими являются инсулин, соматотропин, ИФР – п.85.
Инсулин и СТГ стимулируют синтез белка,
но синтез жира стимулирует только инсулин,
а СТГ стимулирует распад жира.

99. 3. Органы, клетки и биологические жидкости,
в которых образуются белково-пептидные гормоны. См. файл «91 ТАБЛИЦА»

1. В КРОВИ образуются пептидные гормоны АНГИОТЕНЗИН и БРАДИКИНИН
из предшественников ангиотензиногена (п.112) и кининогена (п.62). Предшественники образуются не в крови,
они синтезируются клетками ПЕЧЕНИ (П.117).
Ангиотензин и брадикинин регулируют артериальное давление и много другое.

2. Многие клетки синтезируют факторы роста клеток (ФРК).

3. Лейкоциты синтезируют ЦИТОКИНЫ.

4. Клетки белой жировой ткани (адипоциты) синтезируют «гормон стройности» ЛЕПТИН.
(голова)
5. Клетки головного мозга синтезируют НЕЙРОПЕПТИДЫ, в том числе ЭНДОРФИНЫ и другие опиаты,
влияющие на психику, ВНД, мышление, чувства и т.д. – см. 99.2 и 99.3.

6. Гипоталамус синтезирует ЛИБЕРИНЫ и СТАТИНЫ,
регулирующие работу гипофиза и мозга – п. 100.

7. Гипофиз синтезирует ТРОПИНЫ, регулирующие работу многих эндокринных желёз – п.100.
(шея)
8. Щитовидная железа синтезирует КАЛЬЦИТОНИН (её йодтиронины – не белковые гормоны) – п. 114.

9. Паращитовидные железы синтезируют ПАРАТИРИН – п. 114.
Гормоны «шейных» желёз
кальцитонин и паратирин регулируют концентрацию кальция в крови:
кальцитонин – снижает (гипо/кальции/емический гормон),
а паратирин – повышает (гипер/кальции/емический гормон) – п.114.

10. Тимус синтезирует ТИМОЗИНЫ и другие гормоны, влияющие на иммунную систему.

11. Сердце и сосуды синтезируют гормоны
НУП (натрийуретический пептид) и АДРЕНОМЕДУЛЛИН,
которые снижают артериальное давление
и защищают от сердечно-сосудистых заболеваний – п.113.

(ЖКТ)
12. Желудок синтезирует ГАСТРИН, повышающий кислотность и т.д. (п.61)

13. Поджелудочная железа синтезирует ИНСУЛИН, ГЛЮКАГОН (не глИкогЕн), СОМАТОСТАТИН. – п.100, 102, 37.
Гормоны ПЖЖ регулируют концентрацию глюкозы в крови (гликемию) – п.37, 102, 103.
Инсулин снижает гликемию (гипогликемический гормон),
а глюкагон повышает гликемию (гипергликемический гормон), спасая от обморока и комы.

14. Некоторые клетки ЖКТ синтезируют гормоны:

— СЕКРЕТИН
(обеспечивает нейтрализацию кислого содержимого, поступающего из желудка,
за счёт стимуляции секреции бикарбонатного сока из ПЖЖ),

— ХОЛЕЦИСТОКИНИН
(обеспечивает расщепление полимеров пищи за счёт стимуляции поступления в ДПК сока с ферментами – пептидазами, липазой и т.д.),

— ОПИАТЫ (предотвращают диарею и т.д.)

Не белково-пептидные гормоны синтезируют только щитовидная железа, надпочечники и половые железы.

Белково-пептидные гормоны

Белково-пептидные гормоны (небольшие пептиды, олигопептиды, простые белки, гликопротеины) — наиболее многочисленный, разнообразный по составу и вариабельный в сравнительно-биологическом плане класс гормональных соединений.

По химической структуре, свойствам и физиологическим функциям входящих в него гормонов этот класс можно разделить на следующие семейства:
1) нейрогипофизарные пептиды; 2) гипоталамические рилизинг-факторы; 3) ангиотензины; 4) гипофизарные гормоны ряда АКТГ; 5) гормоны типа глюкагона и гормоны желудочно-кишечного тракта; 6) инсулин и его гомологи; 7) гормоны тимуса; 8) атриопептиды; 9) полипептидные гормоны, регулирующие обмен Са и Р; 10) одноцепочечные (мономерные) белково-пептидные гормоны ряда СТГ; 11) димерные гликопротеиновые гормоны.

Предполагается, что представители большинства перечисленных семейств пептидов возникли на ранних стадиях эволюции позвоночных из общего гормонального предшественника путем серий последовательных мутаций и дупликаций кодирующего гена, а также ассоциаций модифицированных генов в более крупные (Бат, 1975; Панков, 1976).

Это предположение не относится к семейству паратгормона и кальцитонина. В основе типологии гормонов в указанном случае лежит не структурный принцип, а направленность их физиологических эффектов. Гетерогенно по структуре и происхождению семейство рилизинг-факторов. В ряде случаев их гормональные функции эволюционировали не днивергентно, а конвергентно.

К пептидным гормонам относятся также эритропоэтин, фактор регрессии мюллеровых каналов семенников, некоторые нейросекреторные гормоны насекомых и т.д.

1) пептидные и белковые гормоны,

2) гормоны — производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды — гормоноподобные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тиролиберин, соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин и др. — см. далее), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны — производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают своё действие на клетки, находящиеся вблизи их места синтеза. [ 2 ]

Принципы передачи гормонального сигнала клеткам-мишеням

Известны два основных типа передачи гормонального сигнала клеткам-мишеням. Липофильные гормоны проникают в клетку, а затем поступают в ядро. Гидрофильные гормоны оказывают действие на уровне кпеточной мембраны.

гидрофильный гормон гормональный сигнал

Липофильные гормоны, к которым относятся стероидные гормоны, тироксин и ретиноевая кислота, свободно проникают через плазматическую мембрану внутрь клетки, где взаимодействуют с высокоспецифическими рецепторами. Гормон-рецепторный комплекс в форме димера связывается в ядре с хроматином и инициирует транскрипцию определенных генов. Усиление или подавление синтеза мРНК (mRNA) влечет за собой изменение концентрации специфических белков (ферментов), определяющих ответ клетки на гормональный сигнал.

Гормоны, являющиеся производными аминокислот, а также пептидные и белковые гормону, образуют группу гидрофильных сигнальных веществ. Эти вещества связываются со специфическими рецепторами на внешней поверхности плазматической мембраны. Связывание гopмона передает сигнал на внутреннюю поверхность мембраны и тем самым запускает синтез вторичных мессенджеров (посредников). Молекулы-посредники потенциируют клеточный ответ на действие гормона. [ 1 ]

Гидрофильные гормоны и гормоноподобные вещества построены из аминокислот как, например, белки и пептиды, или являются производными аминокислот. Они депонируются в больших количествах в клетках желез внутренней секреции и поступают в кровь по мере необходимости. Большинство этих веществ переносятся в кровотоке без участия переносчиков. Гидрофильные гормоны действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране. [ 1 ]

Метаболизм пептидных гормонов

В отличие от стероидов пептидные и белковые гормоны являются первичными продуктами биосинтеза. Соответствующая информация считывается с ДНК (DNA) на стадии транскрипции, а синтезированная гяРНК (hnRNA) освобождается от интронов за счет сплайсинга (1). мРНК (mRNA) кодирует последовательность пептида, который чаще всего существенно превышает по молекулярной массе зрелый гормон. Исходная аминокислотная цепь включает сигнальный пептид и пропептид — предшественник гормона. Трансляция мРНК происходит на рибосомах по обычной схеме (2). Вначале синтезируется сигнальный пептид. Его функция состоит в том, чтобы связать рибосомы на шероховатом эндоплазматическом ретикулуме [ШЭР (rER)] и направить растущую пептидную цепь в просвет ШЭР (3). Синтезированный продукт является предшественником гормона, прогормоном. Созревание гормона происходит путем ограниченного протеолиза и последующей (посттрансляционной) модификации, например образования дисульфидных мостиков, гликозилирования и фосфорилирования (4). Зрелый гормон депонируется в клеточных везикулах, откуда секретируется по мере необходимости за счет экзоцитоза.

Биосинтез пептидных и белковых гормонов и их секреция находятся под контролем иерархической системы гормональной регуляции. В этой системе в качестве вторичного мессенджера принимают участие ионы кальция; увеличение концентрации кальция стимулирует синтез и секрецию гормонов.

Анализ гормональных генов показывает, что иногда многие совершенно разные пептиды и белки кодируются одним и тем же геном. Одним из наиболее изученных является ген проопиомеланокортина [ПОМК (POMC)]. Наряду с нуклеотидной последовательностью, соответствующей кортикотропину [адренокортикотропный гормон, АКТГ (АСТН)], этот ген включает перекрывающиеся последовательности, кодирующие ряд небольших пептидных гормонов, а именно б-, в — и г-меланотропинов [МСГ (MSH)], в — и г — липотропинов (ЛПГ (LPH)], в-эндорфина и мет-энкефалина. Последний гормон может также образовываться из в-эндорфина. Прогормоном для этого семейства является так называемый полипротеин. Сигнал о том, какой пептид должен быть получен и секретирован, поступает из системы регуляции после завершения синтеза препропептида. Наиболее важным секретируемым продуктом, полученным из гипофизарного полипротеина кодируемого геном ПОМК, является гормон кортикотропин (АКТГ), стимулирующий секрецию кортизола корой надпочечников. Биологические функции других пептидов до конца не выяснены.

Инактивация и деградация

Деградация пептидных гормонов часто начинается уже в крови или на стенках кровеносных сосудов, особенно интенсивно этот процесс идет в почках. Некоторые пептиды, содержащие дисульфидные мостики, например инсулин, могут инактивироваться за счет восстановления остатков цистина (1), Другие белково-пептидные гормоны гидролизуются протеиназами, а именно экзо — (2) (по концам цепи) и эндопептидазами (3). Протеолиз приводит к образованию множества фрагментов, некоторые из которых могут проявлять биологическую активность. Многие белково-пептидные гормоны удаляются из системы циркуляции за счет связывания с мембранным рецептором и последующего эндоцитоза гормон-рецепторного комплекса. Деградация таких комплексов происходит в лизосомах, конечным продуктом деградации являются аминокислоты, которые вновь используются в качестве субстратов в анаболических и катаболических процессах.

Липофильные и гидрофильные гормоны имеют различный полупериод существования в системе циркуляции (точнее биохимический полупериод, t1/2). По сравнению с гидрофильными гормонами (t1/2 несколько минут или часов) липофильные гормоны живут существенно дольше (t1/2 составляет несколько часов или дней). Биохимический полупериод гормонов зависит от активности системы деградации. Воздействие на систему деградации лекарственными препаратами или повреждение тканей может вызвать изменение скорости распада, а следовательно, и концентрации гормонов. [ 1 ]

Механизм действия гидрофильных гормонов

Большинство гидрофильных сигнальных веществ не способны проходить через липофильную клеточную мембрану. Поэтому передача сигнала в клетку осуществляется через мембранные рецепторы (проводники сигнала). Рецепторы — это интегральные мембранные белки, которые связывают сигнальные вещества на внешней стороне мембраны и за счет изменения пространственной структуры генерируют новый сигнал на внутренней стороне мембраны. Данным сигналом определяется транскрипция определенных генов и активность ферментов, которые контролируют обмен веществ и взаимодействуют с цитоскелетом.

Различают три типа рецепторов.

1. Рецепторы первого типа являются белками, имеющими одну трансмембранную полипептидную цепь. Это аллостерические ферменты, активный центр которых расположен на внутренней стороне мембраны. Многие из них являются тирозиновыми протеинкиназами. К этому типу принадлежат рецепторы инсулина, ростовых факторов и цитокинов.

Связывание сигнального вещества ведет к димеризации рецептора. При этом происходит активация фермента и фосфорилирование остатков тирозина в ряде белков. В первую очередь фосфорилируется молекула рецептора (автофосфорилирование). С фосфотирозином связывается SН2-домен белка-переносчика сигнала, функция которого состоит в передаче сигнала внутриклеточным протеинкиназам.

2. Ионные каналы. Эти рецепторы второго типа являются олигомерными мембранными белками, образующими лиганд-активируемый ионный канал. Связывание лиганда ведет к открыванию канала для ионов Na+, К+ или Cl-. По такому механизму осуществляется действие нейромедиаторов, таких, как ацетилхолин (никотиновые рецепторы: Na+ — и К+-каналы) и г-аминомасляная кислота (А-рецептор: Cl—канал).

3. Рецепторы третьего типа, сопряженные с ГТФ — связывающими белками. Полипептидная цепь этих белков включает семь трансмембранных тяжей. Такие рецепторы передают сигнал с помощью ГТФ-связывающих белков на белки-эффекторы, которые являются сопряженными ферментами или ионными каналами. Функция этих белков заключается в изменении концентрации ионов или вторичных мессенджеров.

Таким образом, связывание сигнального вещества с мембранным рецептором влечет за собой один из трех вариантов внутриклеточного ответа: рецепторные тирозинкиназы активируют внутриклеточные протеинкиназы, активация лиганд-активируемых ионных каналов ведет к изменению концентрации ионов и активация рецепторов, сопряженных с ГТФ-связывающими белками, индуцирует синтез веществ-посредников, вторичных мессенджеров. Все три системы передачи сигнала взаимосвязаны. Так, например, образование вторичного мессенджера цАМФ (сАМР) приводит к активации протеинкиназ А [ПК-А (PK-A)], вторичный мессенджер диацилглицерин [ДАГ (DAG)] активирует [ПК-С (PK-C)], а вторичный мессенджер инозит-1,4,5-трифосфат [ИФ3 (InsP3)] вызывает повышение концентрации ионов Са2+ в цитоплазме клетки.

Преобразование сигнала G-белками.

G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки переносят сигнал с рецептора третьего типа на белки-эффекторы. Они построены из трех субъединиц: б, в и г. б-cубъединица обладает свойством связывать гуаниновые нуклеотиды [ГТФ (GTP) или ГДФ (GDP)]. Белок проявляет слабую ГТФ-азную активность и похож на другие ГТФ-связывающие белки, такие, как ras и фактор элонгации Tu (EF-Tu). В неактивном состоянии G-белок связан с ГДФ.

При связывании сигнального вещества с рецептором третьего типа конформация последнего изменяется таким образом, что комплекс приобретает способность связывать G-белок. Ассоциация G-белка с рецептором приводит к обмену ГДФ на ГТФ (1). При этом происходит активация G-белка, он отделяется от рецептора и диссоциирует на б-субъединицу и в,г-комплекс. ГФЦ-б субъединица связывается с белками-эффекторами и изменяет их активность, в результате чего происходит открывание или закрывание ионных каналов, активация или ингибирование ферментов (2). Медленный гидролиз связанного ГТФ до ГДФ переводит б-субъединицу в неактивное состояние и она вновь ассоциирует с в,г-комплексом, т.е. G-белок возвращается в исходное состояние. [ 1 ]

Вторичные мессенджеры, или посредники, это внутриклеточные вещества, концентрация которых строго контролируется гормонами, нейромедиаторами и другими внеклеточными сигналами. Такие вещества образуются из доступных субстратов и имеют короткий биохимический полупериод. Наиболее важными вторичными мессенджерами являются цАМФ (сAMP), цГТФ (cGTP), Са2+, инозит-1,4,5-трифосфат [ИФ3 (lnsP3)], диацилглицерин [ДАГ (DAG)] и монооксид азота (NO).

Биосинтез. Нуклеотид цАМФ (3,5-циклоаденозинмонофосфат, сАМР> синтезируется мембранными аденилатциклазами [1] — семейством ферментов, катализирующих реакцию циклизации АТФ (АТР) с образованием цАМФ и неорганического пирофосфата. Расщепление цАМФ с образованием АМФ (AMP) катализируется фосфодиэстеразами [2], которые ингибируются при высоких концентрациях метилированных производных ксантина, например кофеином.

Активность аденилатциклазы контролируется G-белками, которые в свою очередь сопряжены с рецепторами третьего типа, управляемыми внешними сигналами. Большинство G-белков (Gs-белки) активируют аденилатциклазу, некоторые G-белки ее ингибируют (Gi-белки). Некоторые аденилатциклазы активируются комплексом Са2+/кальмодулин.

Механизм действия. цАМФ является аллостерическим эффектором протеинкиназ А (ПК-Б) [3] и ионных каналов (см. с.372). В неактивном состоянии ПК-Б является тетрамером, две каталитические субъединицы (К-субъединицы) которого ингибированы регуляторными субъединицами (Р-субъединицы) (аутоингибирование). При связывании цАМФ Р-субъединицы диссоциируют из комплекса и К-единицы активируются. Фермент может фосфорилировать определенные остатки серина и треонина в более чем 100 различных белках, в том числе во многих ферментах (см. с.158) и факторах транскрипции. В результате фосфорилирования изменяется функциональная активность этих белков.

Наряду с цАМФ функции вторичного мессенджера может выполнять и цГМФ (cGMP). Оба соединения различаются по метаболизму и механизму действия.

Роль ионов кальция

Уровень ионов кальция. Концентрация ионов Са2+ в цитоплазме нестимулированной клетки очень низка (10-100 нМ). Низкий уровень поддерживается кальциевыми АТФ-азами (кальциевыми насосами) и натрий-кальциевыми обменниками. Резкое повышение концентрации ионов Са2+ в цитоплазме (до 500-1000 нМ) происходит в результате открывания кальциевых каналов плазматической мембраны или внутриклеточных кальциевых депо (гладкого и шероховатого эндоплазматического ретикулума). Открывание каналов может быть вызвано деполяризацией мембран или действием сигнальных веществ, нейромедиаторов (глутамат и АТФ, см. с.342), вторичных мессенджеров (ИФ3 и цАМФ), а также вещества растительного происхождения рианодина. В цитоплазме и клеточных органеллах имеется множество белков способных связывать Са2+, некоторые из них выполняют роль буфера.

При высокой концентрации в цитоплазме ионы Са2+ оказывает на клетку цитотоксическое действие. Поэтому уровень кальция в отдельной клетке испытывает кратковременные всплески, увеличиваясь в 5-10 раз, а стимуляция клетки увеличивает лишь частоту этих флуктуаций.

Действие кальция опосредовано специальными Са2+-связывающими белками («кальциевыми сенсорами»), к которым принадлежат аннексин, кальмодулин и тропонин (см. с.326). Кальмодулин — сравнительно небольшой белок (17 кДа) — присутствует во всех животных клетках. При связывании четырех ионов Са2+ (на схеме голубые кружочки) кальмодулин переходит в активную форму, способную взаимодействовать с многочисленными белками. За счет активации кальмодулина ионы Са2+ оказывают влияние на активность ферментов, ионных насосов и компонентов цитоскелета.

Инозит-1,4,5-трифосфат и диацилглицерин

Гидролиз фосфатидилинозит-4,5-дифосфата [ФИФ2 (PlnsP2)] фосфолипазой С [4] приводит к образованию двух вторичных мессенджеров: инозит-1,4,5-трифосфата и диацилглицерина. Гидрофильный ИФ3 поступает в эндоплазматический ретикулум [ЭР (ЕR)] и индуцирует высвобождение ионов Са2+ из запасающих везикул. Липофильный ДАГ остается в мембране и активирует протеинкиназу C, которая в присутствии Са2+ фосфорилирует различные белковые субстраты, модулируя их функциональную активность. [ 1 ]

Основные представители гидрофильных гормонов

Естественно, самыми большими группами гормонов являются стероидные гормоны и пептидные гормоны. Но есть и другие группы.

Биогенные амины (гистамин, серотонин, мелатонин) и катехоламины (дофа, дофамин, норадреналин и адреналин) образуются путем декарбоксилирования аминокислот. [ 1 ]

Гистамин в человеческом организме — тканевый гормон, медиатор, регулирующий жизненно важные функции организма и играющий значительную роль в патогенезе ряда болезненных состояний.

Гистамин образуется в организме при декарбоксилировании аминокислоты гистидина, катализируемого гистидиндекарбоксилазой.

Этот гормон депонируется в тучных клетках и базофилах в виде комплекса с гепарином, свободный гистамин быстро деактивируется окислением, катализируемым диаминоксидазой, либо метилируется гистамин-N-метилтрансферазой. Конечные метаболиты гистамина — имидазолилуксусная кислота и N-метилгистамин выводятся с мочой.

Гистамин в организме человека находится в неактивном состоянии. При травмах, стрессе, аллергических реакциях количество свободного гистамина заметно увеличивается. Количество гистамина увеличивается и при попадании в организм различных ядов, определенных пищевых продуктов, а также некоторых лекарств.

Свободный гистамин вызывает спазм гладких мышц (включая мышцы бронхов и сосудов), расширение капилляров и понижение артериального давления, застой крови в капиллярах и увеличение проницаемости их стенок, вызывает отёк окружающих тканей и сгущение крови, стимулирует выделение адреналина и учащение сердечных сокращений.

Гистамин оказывает свое действие через конкретные клеточными рецепторами гистамина. В настоящее время выделяют три группы рецепторов гистамина, которые обозначаются H1, H2 и H3.

Гистамин играет значительную роль в физиологии пищеварения. В желудке гистамин секретируется энтерохромаффиноподобными (ECL-) клетками слизистой оболочки. Гистамин является стимулятором продукции соляной кислоты, воздействуя на H2 рецепторы обкладочных клеток слизистой оболочки желудка. Разработан и активно применяется при лечении кислотозависимых заболеваний (язвенная болезнь желудка и двенадцатиперстной кишки, ГЭРБ и т.п.) целый ряд лекарств, называемых H2-блокаторами гистаминовых рецепторов, которые блокируют воздействие гистамина на обкладочные клетки, уменьшая тем самым секрецию соляной кислоты в просвет желудка.

Серотонин (5-окситриптамин, 5-НТ) был открыт при поисках сосудосуживающего вещества, содержащегося в крови. Довольно быстро он был идентифицирован с ранее обнаруженным Эрспаймером в кишечнике энтерамином и было расшифровано его химическое строение, оказавшееся весьма простым.

Около 90% серотонина содержится в кишечнике, причём почти исключительно в энтерохромафинных клетках. Также он есть в селезёнке, печени, почках, лёгких, в различных эндокринных железах.

Серотонин есть и в главном мозге (сравнительно много в гипоталамусе и в среднем мозге, меньше в таламусе, гиппокамне, совсем не был найден в мозолистом теле и мозжечке), и в спинном мозге.

Серотонин образуется из аминокислоты триптофана путём её последовательного 5-гидроксилирования ферментом 5-триптофангидроксилазой (в результате чего получается 5-гидрокситриптофан, 5-ГТ) и затем декарбоксилирования получившегося гидрокситриптофана ферментом триптофандекарбоксилазой.5-триптофангидроксилаза синтезируется только в соме серотонинергических нейронов, гидроксилирование происходит в присутствии ионов железа и кофактора птеридина.

Серотонин играет важную роль в процессах свёртывания крови. Тромбоциты крови содержат значительные количества серотонина и обладают способностью захватывать и накапливать серотонин из плазмы крови. Серотонин повышает функциональную активность тромбоцитов и их склонность к агрегации и образованию тромбов. Стимулируя специфические серотониновые рецепторы в печени, серотонин вызывает увеличение синтеза печенью факторов свёртывания крови. Выделение серотонина из повреждённых тканей является одним из механизмов обеспечения свёртывания крови по месту повреждения.

Серотонин участвует в процессах аллергии и воспаления. Он повышает проницаемость сосудов, усиливает хемотаксис и миграцию лейкоцитов в очаг воспаления, увеличивает содержание эозинофилов в крови, усиливает дегрануляцию тучных клеток и высвобождение других медиаторов аллергии и воспаления. Местное (например, внутримышечное) введение экзогенного серотонина вызывает сильную боль в месте введения. Предположительно серотонин наряду с гистамином и простагландинами, раздражая рецепторы в тканях, играет роль в возникновении болевой импульсации из места повреждения или воспаления.

Также большое количество серотонина производится в кишечнике. Серотонин играет важную роль в регуляции моторики и секреции в желудочно-кишечном тракте, усиливая его перистальтику и секреторную активность. Кроме того, серотонин играет роль фактора роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбактериозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается.

Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, диареи при химиотерапии злокачественных опухолей. Аналогичное состояние бывает при некоторых злокачественных опухолях, эктопически продуцирующих серотонин.

Большое содержание серотонина также отмечается в матке. Серотонин играет роль в паракринной регуляции сократимости матки и маточных труб и в координации родов. Продукция серотонина в миометрии возрастает за несколько часов или дней до родов и ещё больше увеличивается непосредственно в процессе родов. Также серотонин вовлечён в процесс овуляции — содержание серотонина (и ряда других биологически активных веществ) в фолликулярной жидкости увеличивается непосредственно перед разрывом фолликула, что, по-видимому, приводит к увеличению внутрифолликулярного давления.

Серотонин оказывает значительное влияние на процессы возбуждения и торможения в системе половых органов. Например, увеличение концентрации серотонина у мужчин задерживает наступление эякуляции.

Дефицит или ингибирование серотонинергической передачи, например, вызванные снижением уровня серотонина в мозге, является одним из факторов формирования депрессивных состояний и тяжелых форм мигрени.

Гиперактивация серотониновых рецепторов (например, при приёме некоторых наркотиков) может привести к галлюцинациям. C хронически повышенным уровнем их активности может быть связано развитие шизофрении. [ 6 ]

В 1958 году в Йельском университете Лернер с соавторами из 250000 бычьих эпифизов впервые выделили в чистом виде гормон эпифиза, который был идентифицирован как 5-метокси-N-ацетил-трипталин (мелатонин).

Изменения концентрации мелатонина имеют заметный суточный ритм в шишковидном теле и в крови, как правило, с высоким уровнем гормона в течение ночи и низким уровнем в течение дня.

Синтез мелатонина заключается в том, что циркулирующая в крови аминокислота триптофан поглощается эпифизарными клетками, окисляются до 5-окситриптофана и затем декарбоксилируется до формы биогенного амина — серотонина (синтез серотонина). Ольшая часть серотонина метаболизируется в эпифизе при помощи моноаминоксидазы, которая разрушает серотонин в других органах. Меньшая часть серотонина ацетилируется в шишковидной железе до N-ацетил серотонина, и это вещество затем превращается в 5-метокси-N-ацетилтриптамин (мелатонин). Последний этап образования мелатонина осуществляется под влиянием особого фермента оксиндол-O-метилтрансферазы. Оказалось, что шишковидная железа является почти единственным образованием, где обнаружен этот уникальный фермент.

В отличие от серотонина, который образуется и в центральной нервной системе, и в разнообразных периферических органах и тканях, источником мелатонина является по существу один орган — эпифиз.

Мелатонин регулирует деятельность эндокринной системы, кровяное давление, периодичность сна, сезонную ритмику у многих животных, замедляет процессы старения, усиливает эффективность функционирования иммунной системы, обладает антиоксидантными свойствами, влияет на процессы адаптации при смене часовых поясов.

Кроме того, мелатонин участвует в регуляции кровяного давления, функций пищеварительного тракта и работы клеток головного мозга.

В настоящее время уже хорошо известно, что в шишковидной железе млекопитающих содержание серотонина и мелатонина варьируется определённым образом в течение 24-часового периода.

При нормальных условиях освещения уровень серотонина наибольший днём. С наступлением темноты содержание серотонина в эпифизе быстро понижается (максимальное — через 8 часов после начала светлого периода суток, минимальное — через 4 часа после наступления темноты).

Содержание мелатонина в эпифизе изменяется в течение суток прямо противоположно уровню серотонина. [ 6 ]

Адреналин — гормон, синтезируемый в мозговом веществе надпочечных желез. О его существовании известно более столетия. В 1901 г. адреналин был выделен из экстракта надпочечников в кристаллическом состоянии Такамине, Альдрихом и И. Фюртом. Двумя годами позже Ф. Штольц дал окончательное доказательство его структуры путем синтеза. Адреналин оказался 1- (3,4-диоксифенил) — 2-метиламиноэтанолом.

Это бесцветный кристаллический порошок. Обладая асиметрическим атомом углерода, адреналин существует в виде двух оптических изомеров. Из них левовращающий по гормональному действию в 15 раз активнее правовращающего. Именно он синтезируется в надпочечниках.

В мозговом слое надпочечников человека, весящих 10г, содержится около 5 мг адреналина. Кроме того, в них же найдены гомологи адреналина: норадреналин (0,5 мг) и изопропиладреналин (следы).

Адреналин и норадреналин есть также в крови человека. Содержание их в венозной крови составляет 0,04 и 0,2 мкг% соответственно. Предполагают, что адреналин и норадреналин в виде соли с АТФ в небольших количествах откладываются в окончаниях нервных волокон, высвобождаясь в ответ на их раздражение. В результате этого устанавливается химический контакт между окончанием нервного волокна и клеткой или между двумя нейронами.

Все три вещества — адреналин, норадреналин и изопропиладреналин — оказывают мощное влияние на сосудистую систему организма. Кроме того, они повышают уровень обмена углеводов в организме, усиливая распад гликогена в мышцах. Это объясняется тем, что фосфорилаза мышц под опосредствованным аденилатциклазой действием адреналина переходит из неактивной формы (фосфорилаза b) в активную форму (фосфорилаза а).

Таким образом, адреналин в мышцах выполняет ту же функцию, что глюкагон в печени, обеспечивая запуск аденилатциклазной реакции после взаимодействия с поверхностным гормональным рецептором клетки-мишени.

Гормоны симпатоадреналовой системы хотя и не являются жизненно-необходимыми, их роль в организме чрезвычайно велика: именно они обеспечивают адаптацию к острым и хроническим стрессам. Адреналин, норадреналин и домафин — основные элементы реакции «борьбы или бегства» (возникающей, например, при неожиданной встрече с медведем в зарослях черники). Ответ на испытываемый при этом испуг включает в себя быструю интегрированную перестройку многих сложных процессов в органах, непосредственно участвующих в данной реакции (мозг, мышцы, сердечно-лёгочная система и печень). Адреналин в этом «ответе”:

1) быстро поставляет жирные кислоты, выполняющие роль главного первичного топлива для мышечной активности;

2) мобилизует глюкозу в качестве источника энергии для мозга — путём повышения гликогенолиза и глюконеогенеза в печени и понижения поглощения глюкозы в мышцах и других органах;

3) понижает высвобождение инсулина, что также предотвращает поглощение глюкозы периферическими тканями, сберегая её, в результате для центральной нервной системы.

Нервная стимуляция мозгового слоя надпочечников приводит к слиянию хромаффинных гранул с плазматической мембраной, и таким образом обусловливает выброс норадреналина и адреналина путём экзоцитоза. Этот процесс зависит от кальция и подобно другим процессам экзоцитоза стимулируется холинергическими и в-адренергическими агентами и ингибируется б-адренергическими агентами. Катехоламины и АТР высвобождаются в том же соотношении, в каком они присутствуют в гранулах. Это относится и к другим компонентам, включая ДБГ, кальций и хромогранин А.

Обратный захват катехоламинов нейронами — важный механизм, обеспечивающий, с одной стороны, сохранение гормонов, а с другой — быстрое прекращение гормональной или нейромедиаторной активности. В отличие от симпатических нервов мозговой слой надпочечников лишен механизма обратного захвата и запасания выделившихся катехоламинов. Секретируемый надпочечниками адреналин попадает в печень и скелетные мышцы, но затем быстро метаболизируется. Лишь очень небольшая часть норадреналина достигает отдалённых тканей. Катехоламины циркулируют в плазме в слабоассоциированном с альбумином виде. Они очень недолговечны: период их биологической полужизни составляет 10 — 30 сек.

Механизм действия катехоламинов привлекает внимание исследователей почти целое столетие. Действительно, многие общие концепции рецепторной биологии и действия гормонов берут начало ещё в самых разных исследованиях.

Катехоламины действуют через два главных класса рецепторов: б-адренергические и в-адренергические. Каждый из них подразделяется на два подкласса: соответственно б1 и б2, в1 и в2. Данная классификация основана на относительном порядке связывания с различными агонистами и антагонистами. Адреналин связывается (и активирует) как с б-, так и с в-рецепторами, и поэтому его действие на ткань, содержащую рецепторы обоих классов, зависит от относительного сродства этих рецепторов к гормону. Норадреналин в физиологических концентрациях связывается главным образом с б-рецепторами.

Феохромоцитомы представляют собой опухоли мозгового слоя надпочечников, которые обычно не диагностируются до тех пор, пока не начнут продуцировать и секретировать адреналин и норадреналин в количествах, достаточных для появления тяжелого гипертонического синдрома. При феохромоцитоме часто бывает повышено отношение норадреналин/адреналин. Возможно, именно этим и объясняются различия в клинических проявлениях, поскольку норадреналину приписывают основную роль в патогенезе гипертонии, а адреналин считают ответственным за гиперметаболизм. [ 3 ] [ 5 ]

В статье «Белково пептидные гормоны» использованы материалы:

http://proza.ru/2017/06/08/1166

http://medbe.ru/materials/endokrinnye-funktsii/belkovo-peptidnye-gormony/

http://bio.bobrodobro.ru/3486

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *